

PhD Vincenzo Terracciano

Design and Development of Semiconductors for High-Efficiency Power Systems

Tutor: <u>Andrea Irace</u> Co-Tutor: <u>Vincenzo d'Alessandro</u>

Cycle:XXXVIII

Year: Second

My background

- MSc degree: *Electronic Engineering*
- Research laboratory: *OPTO-POWER LAB*
- PhD start date: 01/11/2022
- Scholarship type: *ITEE*
- Partner company: Vishay Semiconductor

SUMMARY OF ANNUAL ACTIVITIES

Ad hoc PhD courses	Courses
Numerical Methods For Thermal Analysis, Modeling, And simulation: Application to Electronic Devices And systems (<mark>DIETI</mark>)	 Numerical Models For The Fields(DIETI) <u>Analitycal Mechanics (Physics)</u>
Contributions To Conferences	
International Conference on Silicon Carbide and Related Materials (ICSCRM), Raleigh USA 2024	

European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (ESREF), Parma Italy 2024

POWER SEMICONDUCTOR PHYSICS

- <u>Power Semiconductor Physics</u> is concerned with the study of the physical principles and properties of semiconductors used in power electronic devices.
- The power devices include components like <u>diodes, transistors, and rectifiers</u>.
- In power electronics systems, power devices are used as solid-state switches.

RESEARCH ACTIVITY¹

RESEARCH ACTIVITY PROBLEM

Employ semiconductors with superior properties for power switching, such as wide-bandgap (WBG) materials

Involves innovation in device architecture

RESEARCH ACTIVITY¹

Silicon carbide (SiC) belongs to the class of wide-bandgap materials, i.e., semiconductors showcasing a forbidden energy band wider than silicon (Si).

Advantages of SiC

- Higher thermal conductivity
- Higher working temperature
- Higher saturation velocity
- Higher breakdown voltage

SiC power MOSFET based on innovative vertical Gate All Around (GAA)

SiC power MOSFET based on Quasi-Planar Trench Architecture

Through campaign of TCAD simulations, it was possible to observe, for both design, an improving of electrical behaviour.

Products

V. d'Alessandro, V. Terracciano, A. Borghese, M. Boccarossa, and A. Irace "A Simple ElectrothermalCompact Model for SiC MPS Diodes Including the Snapback Mechanism", 29th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 2023.

V. Terracciano, A. Borghese, M. Boccarossa, V. d'Alessandro, and Andrea Irace "*A Geometry- Scalable Physically-Based SPICE Compact Model for SiC MPS Diodes Including the Snapback Mechanism*", International Conference on Silicon Carbide and Related Materials (ICSCRM), 2023.

L. Maresca, **V. Terracciano**, A. Borghese, M. Boccarossa, M. Riccio, G. Breglio, A. Mihaila, G. Romano, S. Wirths, L. Knoll, and A. Irace *"SiC GAA MOSFET Concept for High Power Electronics Performance Evaluation through Advanced TCAD Simulations"*, International Conference on SiliconCarbide and Related Materials (ICSCRM), 2023.

A. Borghese, V. Terracciano, M. Boccarossa, A. Irace, and V. d'Alessandro, "*Geometry-Scalable Electrothermal Compact Circuit Model of SiC MPS Diodes Accounting for the Snapback Mechanism: Application to Current Surge Events*" 35th European Symposium on Reliability of Electron Devices, Failure Physics and Analysis (ESREF), 2024.

C. Scognamillo, A. Borghese , K. Melnyk, I. Nistor, V. d'Alessandro, M. Boccarossa,

V. Terracciano, M. Riccio, A. Pio Catalano, G. Breglio, N. Lophitis, M. Antoniou, M. Rahimo, A. Irace, and L. Maresca "*Enhanced Out-of-SOA Performance in 3.3 kV SiC MOSFETs: A Comparative Study of Planar and Quasi-Planar Trench Architectures*" ICSCRM 21: International Conference on Silicon Carbide and Related Materials (ICSCRM), 2024.

L. Maresca, V. Terracciano, A. Borghese, M. Boccarossa, M. Riccio, G. Breglio, S. Wirths and A. Irace "*Evaluation of Switching Performances and Short Circuit Capability of a 1.2 kV SiC GAA MOSFET through TCAD Simulations*" ICSCRM 21: International Conference on Silicon Carbide and Related Materials (ICSCRM), 2024.

Thank You For Your Attention

EXAMPLE: IDEAL VS REAL DIODE

DYNAMIC: REVERSE RECOVERY

RESEARCH ACTIVITY²

RESEARCH ACTIVITY PROBLEM

To realize a **compact model** in the form of a **SPICE-compatible subcircuit** describing the electrical and electrothermal behavior of a particular SiC diode: Merged PiN Schottky (MPS). In addition, the model has to take into account of the detrimental snapback mechanism, which can lead, where we have multiple cells in parallel, to current-focusing.

Through a **compact model**, it would be possible to <u>reduce</u> both the **time** and **complexity** of a TCAD simulation, as in the case of <u>TCAD electrothermal simulations</u>.

APPROACHES TO REALIZE THESE MODELS

The approach is based on a **comparison** of Sentaurus TCAD simulations and the SPICE simulations, while specifically for electrothermal analysis we exploited the thermal equivalent of Ohm's law (TEOL)

SYNOPSYS° V S

RESEARCH ACTIVITY¹

PAPER

"SiC GAA MOSFET Concept for High Power Electronics Performance Evaluation through Advanced TCAD Simulations"

ontact

Silicon carbide (SiC) belongs to the class of wide-bandgap materials, i.e., semiconductors igh-k. Low Di showcasing a forbidden energy band wider Planarization All_Around than silicon (Si). **Advantages of SiC** n' Si subst > Higher thermal conductivity Drain Contac > Higher working temperature SiC power MOSFET based on Higher saturation velocity innovative vertical Gate All Around Higher breakdown voltage (GAA)

Through campaign of TCAD simulations, it was possible to observe a decrease in R_{on} compared to the usual planar MOSFETs, while maintaining relatively very high BV.

RESEARCH ACTIVITY²

PAPERS

"A Geometry-Scalable Physically-Based SPICE Compact Model for SiC MPS Diodes Including the Snapback Mechanism"

(c) Overlap between the simplified **lumped element** circuit and the MPS cross section

Thanks to this **compact model**, it is possible to estimate with **good accuracy** the effect of the **snapback** in conditions <u>not feasible for TCAD analysis</u>, such as **converter-level simulations**.

RESEARCH ACTIVITY²

PAPER

T "A Simple Electrothermal Compact Model for SiC MPS Diodes Including the Snapback Mechanism"

An **electrothermal compact model for static simulations of SiC MPS** diode has been implemented in the form of **SPICE-compatible subcircuit** and thanks to the **TEOL** approach, It was possible to account for **self-heating**

