

Francesco Cerasuolo Continuous and Adaptive Learning for Traffic Analysis in the New Internet Era

Tutor: Prof. Antonio PescapèCycle: XXXVIIIYear: Second

Candidate's information

- MSc degree: MSc degree in Computer Engineering from University of Naples Federico II
- **DIETI Research group/laboratory:** Traffic Group/ARCLab
- PhD start date end date: 01/11/2022-31/10/2025
- Scholarship type: Unina
- Periods abroad: 3/10/2024-3/03/2025, University of Edinburgh,

Prof. Paul Patras

Summary of study activities

- Ad hoc PhD courses / schools
 - Ethics&Al
 - Hands-on Network Intrusion Detection via Machine and Deep Learning
 - Strategic Orientation for STEM Research & Writing
- PhD School
 - TMA PhD School, Dresden University of Technology
- Seminars
 - Robotics Meet AI & 5G The future is now
 - Economic Fitness: Concepts, Methods and Applications
 - Open Science and Open Access
 - Sustainable IT: Strategies and best practices for a green engineering future
 - Media Forensics in the era of Generative AI
 - Introduction to large language models: evolution and the current state
 - Social Network Analysis Methods and Applications

Summary of study activities

- Conferences
 - IEEE International Conference on Big Data Workshop "Machine Learning for Securing IoT Systems Using BigData", 15-18 December 2023, Sorrento, Italy
 - 20th Italian Networking Workshop, 22-24 January 2024, Madonna di Campiglio, Italy
 - Italian Conference on CyberSecurity (ITASEC) Conference, 8-12 April 2024, Salerno, Italy
 - Network Traffic Measurement and Analysis (TMA) Conference, 21-24 May 2024, Dresden, Germany
 - 1st International Workshop on Trustworthy and eXplainable Artificial Intelligence for Networks (TX4Nets), IFIP/IEEE Networking, 3-6 June 2024, Thessaloniki, Greece
 - **IEEE Symposium on Computers and Communications (ISCC)**, 26-29 June 2024, Paris, France

Research area

Network Traffic Analysis (NTA)

- Collecting and inspecting network data
- Understand and enhance performance

Network Traffic Classification (NTC)

 Associate a label to each traffic object (e.g., (bidirectional) flow, session, burst, etc.)

Main challenges of this domain:

Increasing traffic

Ever-changing nature of traffic

Trustworthiness of decisions

Challenges

Main challenges of this domain:

Trustworthiness of decisions

ML- and DL-based solutions increasingly explored to effectively manage traffic classification tasks **Lifelong Learning** allows models to continually learn, adapt, retain past knowledge, and save resources XAI clarifies the opaque nature of DL models and decision process

Different area of use:

(ML/DL-based) **Traffic Classifiers** to identify app/services that generate traffic

(ML/DL-based) Network Intrusion Detection Systems (NIDS) distinguish legitimate traffic and malicious one and (optionally) attack classes

Mobile Apps

Incremental Mobile Apps Classification

New mobile apps are released each day. Hence, I define a **new incremental approach (Memento)** that **outperform state-of-the-art** for mobile app traffic classification

Incremental Mobile Apps Classification

Traffic patterns of know apps also change over time. To classify this app, there is the need for **updating existing traffic classifiers effectively and efficiently**

This phenomenon is known as *concept drift*. As found, new protocols adoption significantly changes traffic shapes of already known apps.

Incremental Mobile Apps Classification

Collecting sample from new apps is a difficult operation and specifically the labeling operation require **domain expertise** and **human effort**

Hence, I devise a new few-shot incremental approach **SWEET**, including *adaptive traffic augmentation strategies*

Incremental NIDS for Cybersecurity

In cybersecurity domain, different networks include different types of attacks and different devices generating benign traffic

* confusion matrices from training NIDS on network traffic from a network and testing on traffic from a different network

Incremental NIDS for Cybersecurity

Furthermore, we experience **0-day attacks**. Hence, I identify two subset of new classes to be added: *(i) already known classes* and *(ii) unknown attacks*. I design a new pipeline including both a **Domain Adaptation** and a **Class Incremental** procedure.

As a result, **incremental approaches** are able to reach classification performance **>70% F1 Score on both datasets**

Incremental NIDS for Cybersecurity

Mixing XAI techniques (viz. **similarity-based explanation** and **SHAP**), we discover that:

- the target dataset has strong impact
- Incremental NIDS does not rely on minimal-distance or nearest-neighbor classification

Research products

[11]	F. Cerasuolo, A. Nascita, G. Bovenzi, G. Aceto, D. Ciuonzo, A. Pescapè, D. Rossi,							
[]T]	MEMENTO: A Novel Approach for Class Incremental Learning of Encrypted Traffic,							
	Computer Networks, 245, p.110374							
	F. Cerasuolo, G. Bovenzi, D. Ciuonzo, A. Pescapè,							
[J2]	Adaptable, Incremental, and Explainable Network Intrusion Detection Systems for Internet of							
	Things,							
	Engineering Applications of Artificial Intelligence - under 2nd round of review							
[J3]	F. Cerasuolo, G. Bovenzi, D. Ciuonzo, A. Pescapè,							
	Attack-Adaptive Network Intrusion Detection Systems for IoT Networks through Class Incremental							
	Learning,							
	Computer Networks - under review							
	A. Nascita, F. Cerasuolo, G. Aceto, D. Ciuonzo, V. Persico, A. Pescapè.							
[C1]	Explainable Mobile Traffic Classification: the case of Incremental Learning,							
	Proceedings of the 2023 on Explainable and Safety Bounded, Fidelitous, Machine Learning							
	for Networking, pp. 25-31. 2023.							
[C2]	F. Cerasuolo, G. Bovenzi, C. Marescalco, F. Cirillo, D. Ciuonzo, A. Pescapè,							
	Adaptive Intrusion Detection Systems: Class Incremental Learning for IoT Emerging Threats,							
	2023 IEEE International Conference on Big Data (BigData) (pp. 3547-3555)							

Research products

[(2)]	F. Cerasuolo, G. Bovenzi, V. Spadari, D. Ciuonzo, A. Pescapè,							
[CS]	Explainable Few-Shot Class Incremental Learning for Mobile Network Traffic Classification,							
	IEEE Global Communications Conference (GLOBECOM), 2024							
	V. Spadari, F. Cerasuolo, G. Bovenzi, A. Pescapè,							
[C4]	An MLOps Framework for Explainable Network Intrusion Detection with MLflow,							
	29th IEEE Symposium on Computers and Communications (ISCC) 2024							
[C5]	F. Cerasuolo, I. Guarino, V. Spadari, G. Aceto, A. Pescapè,							
	XAI for Interpretable Multimodal Architectures with Contextual Input in Mobile Network Traffic							
	Classification,							
	2024 IFIP Networking Conference (IFIP Networking) (pp. 757-762)							
	F. Cerasuolo, I. Guarino, G. Bovenzi, G. Antichi, A. Pescapè,							
[C6]	When Online Social Network Mobile Apps Meet QUIC: Characterization and Classification,							
	International Conference on Passive and Active Network Measurement, 2025 - under review							
	Mobile App Traffic Dataset,							
[D1]	MIRAGE-QUIC							

Next Year

- Multimodal architectures to more effectively harness the diversity present in network traffic
- Memory free approaches for more scalable and efficient incremental learning
- Class Incremental Learning in federated network
- Class removal from a classifier

Thank you for the attention!

Backup Slides

Concept Drift 1/2

Concept Drift 2/2

Memento

Lower bound

Memento

Best SOTA

SCRATCH

HARD APPS

EASY APPS

Adaptive NIDS

Relabeling procedure to uniform the three considered datasets

(a) IoT-NID

(b) TON IOT

(c) Edge-IIoT

Adaptive NIDS

From bigger dataset: BiC is the best From smaller dataset: FT-Mem is the best

S	Τ	Appr.	F1 [%]						SCRATCH	
			Carc	Csrc	Csrc	C ^{lgl} _{unc}	C ^{lgt} _{com}	Cigi	Call	NIDS
		FT	0.00	6.90	2.96	71.28	94.19	85.03	37.15	
	IoT-NID	FT-Mem	50.37	74.38	60.66	74.40	92.38	85.18	70.88	77.71
Edge-IIoT		BiC	59.66	94.77	74.71	69.21	39.70	51.51	65.04	
	TON_IoT	FT	0.00	21.78	14.00	30.64	97.81	81.02	44.93	
		FT-Mem	44.72	70.52	61.31	33.61	97.81	81.76	70.75	80.83
		BiC	31.92	76.90	60.84	31.75	24.68	26.45	44.97	
	Edge-IIoT	FT	3.53	13.67	9.61	61.70	95.81	76.32	48.53	77.71
		FT-Mem	57.07	61.43	59.69	65.37	95.79	78.41	70.61	
ToT-NTD		BiC	60.91	80.50	72.67	67.03	86.72	75.47	74.30	
	TON_IoT	FT	2.25	18.74	10.49	73.89	83.27	77.80	47.21	85.69
		FT-Mem	76.82	70.85	73.84	79.44	83.29	81.05	77.77	
		BiC	79.74	71.94	75.84	77.94	81.64	79.48	77.83	
	Edge-IIoT	FT	0.13	34.11	25.62	38.30	79.05	64.50	46.55	80.83
		FT-Mem	17.98	83.03	66.77	68.59	79.00	75.28	71.35	
TON TOT		BiC	35.62	94.57	79.83	63.38	50.89	55.35	66.65	
	IoT-NID	FT	0.00	35.32	14.72	77.96	79.01	78.48	43.70	85.69
		FT-Mem	65.30	68.93	66.81	82.61	79.12	80.87	73.20	
		BiC	76.15	75.86	76.03	73.82	46.04	59.93	68.71	

N.B.: $C^{src} = C^{src}_{unc} \cup C^{src}_{com}$, $C^{lgl} = C^{lgl}_{unc} \cup C^{lgl}_{com}$, and $C^{all} = C^{src} \cup C^{lgl}$.

Adaptive NIDS

Target dataset strong impact for correctly classified samples

Table 7

[%] of correctly classified biflows having the top-1, top-3, and top-5 neighbor from the incremental training set ($D = D^{mem} \cup D^{tgt}$) which belongs to the same dataset for a NIDS trained on IoT-NID and adapted to TON IoT with BiC.

Test Dataset	Classes	Same Dataset Neighbors [%]					
Test Dutuset	Chusses	Top-1	Top-3	Top-5			
	Csrc	80.03	82.88	80.02			
IOT-NID	Com	96.13	82.88 95.95 74.16	95.63			
TON T.T	C ^{tgt}	70.92	74.16	76.01			
IUN_IOI	C_{com}^{lgl}	83.90	85.63	86.10			

