

Francesco Vitale Anomaly Detection by Process Mining and Machine Learning for Industrial Cyber-Physical Systems

Tutor: Prof. Nicola MazzoccaCycle: XXXVIIYear: Third

Candidate's information

- MSc degree: Computer Engineering @ UNINA, 2021
- Research group: SECLab
- PhD start date end date: 01/11/21 31/10/24
- Scholarship type: Company-funded scholarship
- Partner company: Hitachi Rail STS
- Periods abroad: Visiting at RWTH Aachen University, 01/02/23 – 31/07/23

Summary of study activities

• First year

- Courses on computer systems modeling, modern technologies, and data analysis
- Literature reviews, proof-of-concept evaluations, prototype development for the funding company
- Supervision of MSc students' theses
- Scientific writing

Second year

- Courses on data analysis and English
- Literature reviews, proof-of-concept evaluations, development of foundational work for my thesis while abroad
- Scientific writing

Third year

- Course on scientific writing
- Literature reviews, refinement of the work done abroad, and development of new research directions
- Supervision of MSc students' theses
- Scientific writing

Research area(s)

- My research focuses on:
 - 1. Industrial Cyber-Physical Systems (ICPSs)
 - Several layers of complexity and vulnerabilities
 - 2. Anomaly detection
 - Several data and anomaly types
 - 3. Process Mining (PM)
 - Process discovery
 - Conformance checking
 - 4. Machine Learning (ML)
 - Clustering, dimensionality reduction

Research problem

• Application of PM for anomaly detection in ICPSs

Research products

	P. Singh, M. S. Azari, F. Vitale, F. Flammini, N. Mazzocca, M. Caporuscio, and J. Thornadtsson,
[J1]	Using log analytics and process mining to enable self-healing in the Internet of Things
	Environment Systems and Decisions,
	Vol. 42, pp. 234 - 250, 2022, <u>https://doi.org/10.1007/s10669-022-09859-x</u> .
[J2]	A. De Benedictis, F. Flammini, N. Mazzocca, A. Somma, and F. Vitale,
	Digital Twins for Anomaly Detection in the Industrial Internet of Things: Conceptual Architecture
	and Proof-of-Concept
	IEEE Transactions on Industrial Informatics,
	Vol. 19, pp. 11553 - 11563, 2023, https://doi.org/10.1109/TII.2023.3246983.
[J3]	S. Guarino, F. Vitale, F. Flammini, L. Faramondi, N. Mazzocca, and R. Setola,
	A Two-Level Fusion Framework for Cyber-Physical Anomaly Detection
	IEEE Transactions on Industrial Cyber-Physical Systems,
	Vol. 2, pp. 1 - 13, 2023, https://doi.org/10.1109/TICPS.2023.3336608.
[J4]	M. Cinque, L. De Simone, N. Mazzocca, D. Ottaviano, and F. Vitale,
	Evaluating virtualization for fog monitoring of real-time applications in mixed-criticality systems
	Real-Time Systems
	Vol. 59, pp. 534 - 567, 2023, <u>https://doi.org/10.1007/s11241-023-09410-4</u> .
[J5]	F. Vitale, F. De Vita, N. Mazzocca, and D. Bruneo,
	A Process Mining-based unsupervised Anomaly Detection technique for the Industrial Internet of
	Things,
	Internet of Things,
	vol. 24, p. 100993, 2023, https://doi.org/10.1016/j.iot.2023.100993.

Research products

	F. Vitale, S. Guarino, F. Flammini, L. Faramondi, N. Mazzocca, and R. Setola,
[J6]	Process Mining for Digital Twin Development of Industrial Cyber-Physical Systems,
	IEEE Transactions on Industrial Informatics,
	2024, <u>https://doi.org/10.1109/TII.2024.3465600</u> .
[J7]	F. Vitale, F. Flammini, M. Caporuscio, and N. Mazzocca,
	Combining Process Mining and Unsupervised Machine Learning for Monitoring Resilient
	Computer Systems,
	Awaiting first decision, submitted to IEEE Transactions on Dependable and Secure Computing.
[J8]	S. Guarino, F. Vitale, E. Del Prete, L. Faramondi, N. Mazzocca, and R. Setola,
	d-TV-DBN: A Hierarchical and Distributed Architecture for Scalable Cyber-Physical Anomaly
	Detection with Bayesian Networks,
	Awaiting first decision, submitted to IEEE Transactions on Emerging Topics in Computing.
[19]	F. Vitale, M. Pegoraro, W. M. P. van der Aalst, and N. Mazzocca,
	Control-flow anomaly detection by process mining-based feature extraction and dimensionality
	reduction,
	Under review, submitted to Knowledge-based Systems.
[J10]	F. Vitale, N. Dall'Ora, S. Gaiardelli, E. Fraccaroli, N. Mazzocca, F. Fummi,
	Process Mining-Driven Fault Diagnosis and Simulation for Cyber-Physical Systems,
	In progress

PhD thesis overview

- Problem statement
 - How can PM be used for anomaly detection in ICPSs?
 - Existing ML solutions are process-agnostic and lack explainability
 - PM for anomaly detection can help to provide process-based descriptions of the ICPS and improve the explainability of the results
- Objective
 - Systematic development of flexible, explainable and effective PM-based anomaly detection for ICPSs

PhD thesis motivation

S1: The application of PM to low-level sensor data is challenging

S2: The existing PM-based solutions are affected by lowquality process models

S3: Noisy data affect the results of PM-based solutions too

PhD thesis contributions Overview

- Methodology for ICPS development
- Framework for PMbased anomaly detection
- Validation against several industrial case studies

Industrial case studies

PhD thesis contributions Methodology

 The methodology is a procedure to characterize the reference ICPS and identify the type of data and anomalies to detect

Legend					
Methodological step Artifact	Methodological flow External input	Relation	Framework		

PhD thesis contributions Framework

 The framework is a flexible set of steps and tools to integrate PM with ML based on the characterization of the reference ICPS

PhD thesis contributions Validation and results

- Pre-processing with ML enables unsupervised characterization of the reference ICPS and allows PMbased time series anomaly detection (S1)
- ML improves the unsupervised characterization, leading to better PM-based time series anomaly detection effectiveness (S3)
- PM-based feature extraction combined with ML improves anomaly detection effectiveness while maintaining the explainable nature of PM (S2 and S3)

Thanks for your attention

Any questions?

