

Marco Vitone

Development of innovative techniques and methodologies for analysis and testing of Storage Systems interfaces based on System on Chip

Tutor: Prof. Nicola Petra

co-Tutor: Ing. Claudio Giaccio

Cycle: XXXVI

Year:1

My background

- MSc degree in Electronics Engineering
- Research group/laboratory : VLSI Elctronics
- PhD start date : 1/11/2020
- Scholarship type: founded by Micron Semiconductor Italia S.R.L.
- Cooperation : Micron Hardware Validation Tool Team

Research field of interest

• System on Chip is a complex IC that integrates CPU, on-chip memory, programmable logic (FPGA) on a single chipset.

- My research focuses on
 - **Design** of SoC:
 - Implementation of hardware accelerator
 - Validation and Debug of SoC adopting Universal Verification Methodology (UVM)

Marco Vitone

Summary of study activities

- Ad hoc PhD courses
 - Digital Forensics' method, practices and tools
 - Statistical data analysis for science and engineering research
 - Data Science for Patient Record Analysis
 - Scientific Programming and Visualization with Python
 - Imprenditorialità accademica
 - Strategic Orientation for STEM Research & Writing
- PhD School
 - Electronics for IoT (SIE 2021)
- Courses attended borrowed from MSc curricula
 - Dispositivi e sistemi fotovoltaici
- Conferences / events attended
 - SIE 2021, 52nd Annual Meeting of Associazione Società Italiana di Elettronica

- Problem
 - Convolutional Neural Network
 - Convolutions require a huge number of multiplications thus decreasing performance in software applications

Objective

- Development of algorithm to reduce the overall number of multiplications needed
- Hardware acceleration of CNN through SoC data-path

- Intended contribution (in perspective)
 - Novel k-parallel fast finite impulse response algorithm (FFA)
 - Design of reconfigurable data-path on SoC for hardware acceleration of computations performed in CNN

- Problem
 - SoC integrates a wide variety of components:
 - Processors
 - Hardware accelerator
 - Storage Interface (UFS, eMMC)
 - Bus interface (AXI, UART, JTAG and so on)
 - Thus, the validation and debug of SoC became challenging.
- Objective
 - Development of simulation environment for complex SoC
 - Usage of UVM technique improving reusability, robustness and simulation coverage

- Intended contribution (in perspective)
 - Development UVM simulation environment for a complex SoC in collaboration with Micron Team.
 - First achievement:
 - Improvement of the overall performance respect to the previous Micron custom simulation environment
 - Reduction of the simulation time : **about 50%.**

PROPOSED SIMULATION ENVIRONMENT

- Number of tests executed : **106**
- Simulation time consumption: 10h 11m

Products

Vitone, M.; Petra, N.

"Reconfigurable Datapath for Hardware Acceleration of Convolutional Neural Network"

SIE-2021, 52nd Annual Meeting of Associazione Società Italiana di Elettronica

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	3	3.2	4	0	10.2
Bimonth 2	9	3	2	0	14
Bimonth 3	8.5	3.9	2	0	14.4
Bimonth 4	0	0.6	8	0	8.6
Bimonth 5	7.4	0	1.6	0	9
Bimonth 6	4	0	6	0	10
Total	31.9	10.7	23.6	0	66.2
Expected	30 - 70	10 - 30	80 - 140	0 - 4.8	

[C1]

Thanks for the attention !

