

Gerardo Saggese

Autonomous In-vivo Brain-Machine-Interface in 28nm-CMOS technology with Ultrasound-based Power-Harvester and Communication-Link (Brain28nm)

Tutor: prof. Antonio G.M. Strollo Cycle: XXXVI Year:2020/2021

My background

Double MSc degree in <u>Electronic Engineering</u> and in <u>Electronics</u> <u>and Telecommunications</u> – Jan/Feb 2020

Ph.D. started in November 2020 (XXXVI cycle) Tutor: prof. **Antonio G.M. Strollo**

My Ph.D. scholarship is founded by MIUR – PRIN 2017

Research field of interest

Study, analysis and implementation of **spike detectors** for multichannel **B**rain **M**achine Interface.

information technology electrical engineering

Research activity: Overview

Problem:

High density of microelectrodes on a single chip allows the monitoring of a wide neurons' population. This, however, sets a major challenge for a <u>limited</u> **power budget** of an **implantable** device.

Objective:

The communication bandwidth and power <u>constraints</u> claim for an <u>on-fly</u> data reduction block. The <u>spike detector</u> is one way of accomplishing it.

Intended contribution:

To provide the most suitable spike detector which offers the best **trade-off** between detection performance and computational efforts/power <u>consumptions</u>.

Technology

Methodologies

ASIC design and implementation with 28 nm <u>CMOS</u> Technology

cādence°

Products

Journal contributions

[1-j]	M. Tambaro., E.A Vallicelli, G. Saggese , A.G.M Strollo, A. Baschirotto, S. Vassanelli "Evaluation of In Vivo Spike Detection Algorithms for Implantable MTA Brain—Silicon Interfaces." in Journal of Low Power Electronics and Applications. 2020; 10(3):26.
[2-j]	G. D. Meo, D. De Caro, G. Saggese , E. Napoli, N. Petra and A. G. M. Strollo, "A Novel Module-Sign Low-Power Implementation for the DLMS Adaptive Filter With Low Steady-State Error." in <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> .
[3-j]	G. Saggese , M. Tambaro, E.A Vallicelli, A.G.M Strollo, S. Vassanelli, A. Baschirotto, M.D Matteis," Comparison of Sneo-Based Neural Spike Detection Algorithms for Implantable Multi-Transistor Array Biosensors." in <i>Electronics</i> 2021, <i>10(4)</i> :410.
[4-j]	G. Saggese , A.G.M Strollo, "Low-Power energy-based spike detector ASIC for implantable multichannel BMI" in Journal of Neuroscience method (<u>submitted</u>)
[5- <mark>j</mark>]	G.Saggese , A.G.M Strollo "A 1024-channels spike detector RAM latch-based for real-time Brain - Silicon Interfaces", in <i>Electronics</i> (<i>in preparation</i>).

Conference contributions

[1-c] M. Tambaro, E. A Vallicelli, G. Saggese , A. La Gala, M. Maschietto, A. G. M Strollo, M. De Matteis,
A. Baschirotto, S. Vassanelli "A scalable spike detection method for implantable high-density multielectrode array," SMACD / PRIME 2021; International Conference on SMACD and 16th Conference on PRIME, 2021, pp. 1-4.

Summary of activities

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	0	3.2	3.5	0	6.7
Bimonth 2	9	3.6	5	0	17.6
Bimonth 3	6	3	5	0	14
Bimonth 4	15	3.9	4	0	22.9
Bimonth 5	0	0	3	0	3
Bimonth 6	0	0	6	0	6
Total	30	13.7	26.5	0	70.2
Expected	30 - 70	10 - 30	80 -140	0-4.8	

Ad hoc courses

- Scientific Programming and Visualization with Python, 8-10/03/2021
- Statistical data analysis for science and engineering research, 17/02-3/04/2021

MSc and BSc courses

- Circuiti per DSP, 18/09-23/12/2020
- Sistemi Elettronici Programmabili, 30/03-7/06/2021
- Cambridge First Certificate English, 3/03-1/06/2021

Workshops

□ "Introduction to FPGAs and the Intel Quartus Prime Software", 24/5/2021.

"Introduction to Simulation and Debug of FPGAs", 7/06/2021

Thank you for your kind attention

