

Gerardo Saggese

Autonomous In-vivo Brain-Machine-Interface in 28nm-CMOS technology with Ultrasound-based Power-Harvester and Communication-Link (Brain28nm)

Tutor: prof. Antonio G.M. Strollo

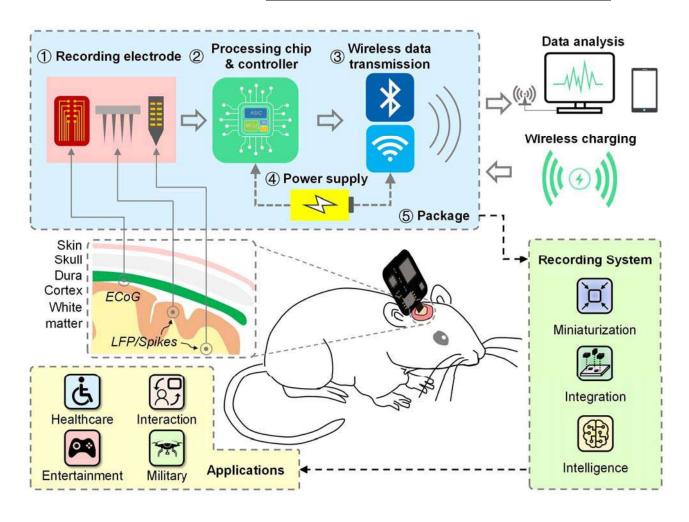
Cycle: XXXVI

Year:2021/2022

My background

Double MSc degree in **Electronic Engineering** and in **Electronics** and Telecommunications – Jan/Feb 2020

Ph.D. started in November 2020 (XXXVI cycle)


Tutor: prof. Antonio G.M. Strollo

My Ph.D. scholarship is founded by MIUR – PRIN 2017

Research field of interest

Study, analysis and implementation of **spike detectors** for multichannel **B**rain **M**achine **I**nterface.

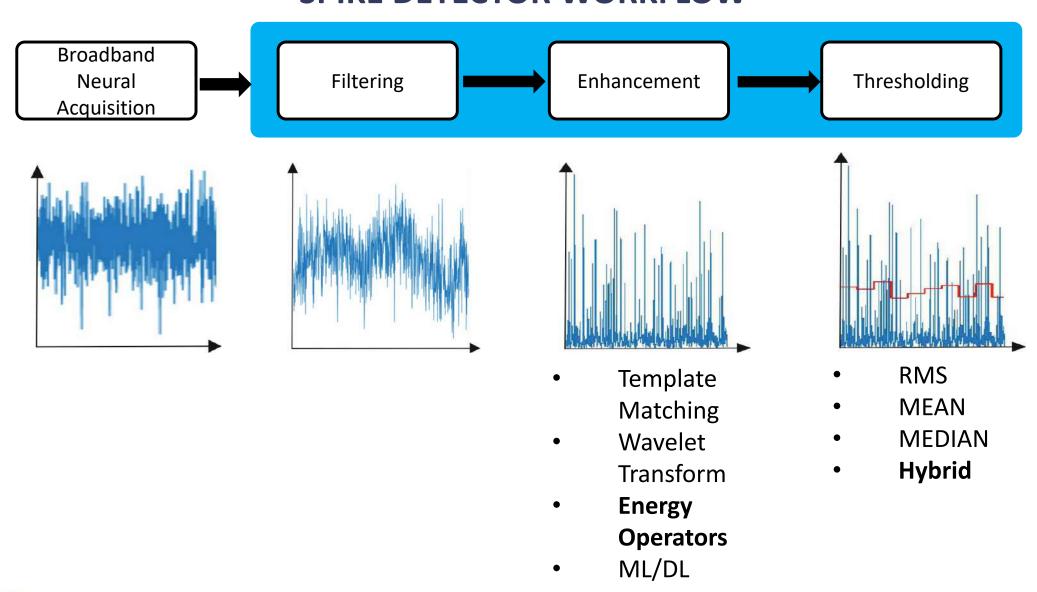
Research activity: Overview

Problem:

Nowadays, neural information can be recorded by thousands of electrodes on a single chip, providing an insight of brain activity. However, the increase in the channels count also set a major challenge for the design of a long-term implantable BMIs which rely on a limited power budget and narrow transmission bandwidth.

Objective:

Increased channel count grows the data bandwidth and make it impossible to stream the raw data wireless to MCUs.


This calls for on-implant data reduction pre-processing: SPIKE DETECTOR.

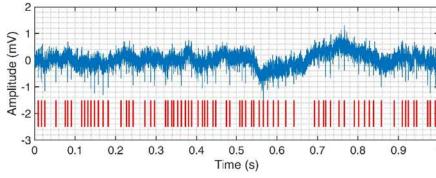
Intended contribution:

To provide the most suitable spike detector which offers the best <u>trade-off</u> between <u>detection performance</u> and <u>computational efforts/power consumptions</u>.

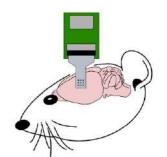
Research activity: Overview SPIKE DETECTOR WORKFLOW

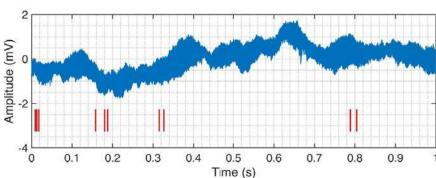
Methodologies

Synthetic
Dataset with
known
ground truth


Extracellular recording

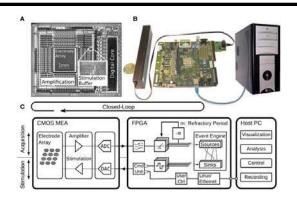
Ebcdrode model


Annual model pyramidal


Neuron model pyramidal

Neuron model interneuron

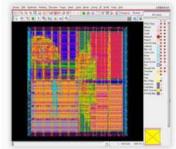
Real extracellular recording with annotated ground truth



Detection metrics (Accuracy, Sensibility and Specificity) depends on many factors (e.g., mechanical/electrical properties as well as biological environmental). Hence, a careful analysis must be carried out to extract the combination of the design parameters which provides satisfactory detection performance.

Methodologies

Closed-loop approach
FPGA design and
integration with MEAs
and analogue front-end



A 256-ch SoC spike detectors with programmable filters and threshold section was designed together an AFE interface and TCP/IP communication method to transfer and receive command from/to a host pc. (Ready for the FIELD TEST)

ASIC design and implementation with 28 nm CMOS
Technology

cādence°

Study and analysis of several low-power techniques aim at reducing the electrical performances of the spike detectors under studied: clock gating, RAM based on Latches, resource sharing etc...

Products

Journal contributions

[1-j]	G. Saggese and A. G. M. Strollo, "A Low Power 1024-Channels Spike Detector Using Latch-Based RAM for Real-Time Brain Silicon Interfaces," Electronics, vol. 10, no. 24, p. 3068, Dec. 2021, doi: 10.3390/electronics10243068.
[2-j]	A. G. M. Strollo, E. Napoli, D. De Caro, N. Petra, G. Saggese and G. Di Meo, "Approximate Multipliers Using Static Segmentation: Error Analysis and Improvements," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 6, pp. 2449-2462, June 2022, doi: 10.1109/TCSI.2022.3152921,
[3-j]	E. Zacharelos, I. Nunziata, G. Saggese , A. G. M. Strollo and E. Napoli, "Approximate Recursive Multipliers Using Low Power Building Blocks," in IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 3, pp. 1315-1330, 1 July-Sept. 2022, doi: 10.1109/TETC.2022.3186240.
[4-j]	G. Di Meo, G. Saggese , A. G. M. Strollo, D. De Caro, and N. Petra, "Approximate Floating-Point Multiplier based on Static Segmentation," Electronics, vol. 11, no. 19, p. 3005, Sep. 2022, doi: 10.3390/electronics11193005.
[5-j]	G. Saggese and A. G. M. Strollo, "Low-Power Energy-Based Spike Detector ASIC for Implantable Multichannel BMIs," Electronics, vol. 11, no. 18, p. 2943, Sep. 2022, doi: 10.3390/electronics11182943.
[6-j]	G. Di Meo, G. Saggese , A. G. M. Strollo and D. De Caro, "MAC unit using Static Segmentation", submitted to IEEE Transactions on Emerging Topics in Computing.
[7-j]	I. Nunziata, E. Zacharelos, G. Saggese , A. M. G. Strollo and E. Napoli, "Approximate Squaring circuits exploiting Recursive Architectures" submitted to Integration Elsevier Journal.

Conference contributions

[1-c]	I. Nunziata, E. Zacharelos, G. Saggese , A. M. G. Strollo and E. Napoli, "Approximate Recursive Multipliers Using Carry Truncation and Error Compensation," 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), 2022, pp. 137-140, doi: 10.1109/PRIME55000.2022.9816787.(Golden Leaf award)
[2-c]	G. Saggese , E. Zacharelos and A. G. M. Strollo, "Low Power Spike Detector for Brain-Silicon Interface using Differential Amplitude Slope Operator," 2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME), 2022, pp. 301-304, doi: 10.1109/PRIME55000.2022.9816758. (paper presented)
[3-c]	G. Saggese and A.G.M Strollo, "Low-Power Energy-Based Spike Detector for Brain-Silicon Interface" 53rd Annual Meeting of the Associazione Società Italiana di Elettronica (SIE), Pizzo (VV), Italy, 7-9 September 2022 (poster presented).

Summary of activities

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	0	4.4	6.5	0	10.9
Bimonth 2	0	0.6	6.5	0	7.1
Bimonth 3	0	1.5	6.5	0	8
Bimonth 4	13	0.6	6	0	19.6
Bimonth 5	8	0	5	0	13
Bimonth 6	4	7	6	0	17
Total	25	14.1	36.5	0	75.6
Expected	30 - 70	10 - 30	80 - 140	0-4.8	

Ad hoc/PhD courses & schools

- Ultra-low power integrated systems for green growth to the trillion scale, PhD. Course of Univ. of Pisa. 20/06/22-22/06/22
- Impreditorialità Accademica, 26/05/2022-26/07/22
- Biosignals measurement and analysis, 15/06/22-13/07/22
- Ph.D School "Automotive Electronics" (SIE22) 05/09/22-07/09/22

MSc and BSc courses

• FPGA per l'elaborazione dei segnali, 30/03/2022-07/06/2022

Workshops

"Comprehensive Digital IC Implementation & Sign-Off", 03/10/2022-05/10/2022.

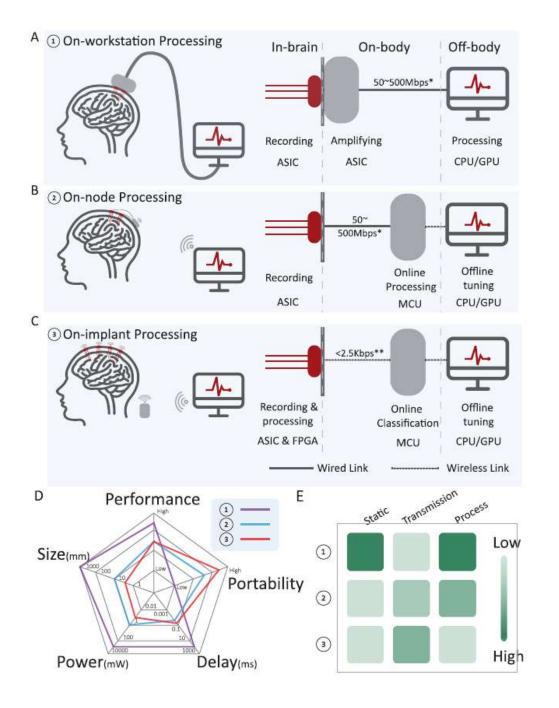
Next Year??

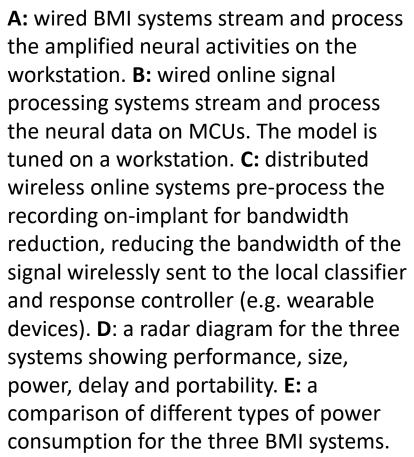
Research Abroad:
Fulda University of
Applied Science
(Germany)
Jan/Feb-June

Advanced and
Approximate
Compressor Tree
Synthesis for FPGAs

Prototype 256-ch SoC Spike Detector with AFE interface

- FIELD TEST
- 1024 channels


Approximating
Computing and its
application in the
BMI DSP systems



Thank you for your attention

- * Assuming the sample frequency is 24 414 Hz with 128 to 1024 channels with 16-bit data stream.
- ** Assuming the firing rate is 20 Hz with binary data stream, with a total of 128 channels. This data rate can be even reduced with binning and/or compression.

