

Carlo Motta

Assessment and enforcement of resilience and security properties in control systems

Tutor: Prof. De Tommasi

co-Tutor: Prof. Santini

Cycle: XXXVI Year:Second

My background

- MSc degree in Automation Engineering, University of Naples Federico II
- Working team: DAiSyLab (Prof. Gianmaria De Tommasi)
- Co-Tutor: Prof. Stefania Santini
- Collaboration: UniSa (Prof. Francesco Basile); DIETI (RO group)
- PhD start date: Academic Year 2020-2021
- Scholarship type: "UNINA"

Research field of interest

- To design supervisory control systems that are resilient (robust) to (cyber-) attacks.
- Security and privacy problems can be modeled in the framework of Discrete Event Systems.
- A system can be designed to be resilient to attacks, otherwise supervisory control can be used to enforce security by restricting the closed-loop behaviour

Summary of study activities

Courses

- Big Data Architecture and Analytics
- Operational Research: Mathematical Modelling, Methods and Software Tools for Optimization Problems;

Conference

• **MED** – THE 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION *Athens (Greece) 28/06/2022-01/07/2022*

Presented Paper: "Assessment of Initial-State-Opacity in Live Bounded and Reversible Discrete Event Systems via Integer Linear Programming"

Research activity (1/3)

- Preventing an intruder to infer a secret and interact in a malicious way with safety-critical functions.
- In a distributed control system, information leaks and deceptions represent a threat to the system itself. The attacker's goal could be either to inflict damage or to learn secrets about the system.

Research activity (2/3)

- Passive attacks: the system is opaque if a user cannot infer any secret if granted a partial observation of the system.
 - the system's initial state represents the secret → Initial State Opacity (ISO)
- Introduced a Necessary and Sufficient condition to conclude if a DES modeled as a Petri net (PN) is ISO based on the solution of Integer Linear Programming Problems.
 - "Assessment of Initial-State-Opacity in Live Bounded and Reversible Discrete Event Systems via Integer Linear Programming";
 - "Necessary and Sufficient Condition to Assess Initial-State-Opacity in Live Bounded and Reversible Discrete Event Systems"
 - "Assessment of Initial-State-Opacity in Live and Bounded Labeled Petri Net Systems via Optimization Techniques"
- This study is suited for PN models with a high level of parallelism such as control systems of industrial plants

Research activity (3/3)

- Active attack: The attacker's goal is to inflict damage on the system by counterfeiting the information exchanged between the actors.
 - Case study: in unsignalized intersection multiple autonomous vehicles interact with an Infrastructure (SI) to synchronize their timing to cross.
- We have modeled the action of an attacker trying to make the vehicles reach an unsafe state and then built a SI resilient to those attacks.
 - "Design of Resilient Supervisory Control for Autonomous Connected Vehicles Approaching Unsignalized Intersection in presence of Communication Delays"
- A similar work has been done for autonomous vehicle at crossings in presence of communication and actuation delays

Products

[P1]	Francesco Basile; Gianmaria. De Tommasi; Carlo Motta; Alberto Petrillo; Stefania Santini 30th Mediterranean Conference on Control and Automation (MED) "Assessment of Initial-State-Opacity in Live Bounded and Reversible Discrete Event Systems via Integer Linear Programming"
[P2]	Francesco Basile; Gianmaria. De Tommasi; Carlo Motta; Claudio Sterle <i>IEEE Control System Letters</i> "Necessary and Sufficient Condition to Assess Initial-State-Opacity in Live Bounded and Reversible Discrete Event Systems"
[P3]	Renato Brancati; Giandomenico Di Massa; Carlo Motta; Stefano Pagano; Alberto Petrillo; Stefania Santini The International Conference of IFToMM ITALY "A Test Rig for Experimental Investigation on a MRE Vibration Isolator"
[P4]	Gianmaria. De Tommasi; Carlo Motta; Alberto Petrillo; Stefania Santini IEEE International Conference on Networking, Sensing and Control (ICNSC) 2022 "Design of Resilient Supervisory Control for Autonomous Connected Vehicles Approaching Unsignalized Intersection in presence of Communication Delays"

Future Works

- For next year it would be interesting to build supervisors able to counteract both delays issues and active attacks.
 - The study could be conducted on bigger and more complex systems.
- The same framework may be applied to Petri Nets in order to merge the concepts of active and passive attacks.
- We also intend to extend the study on passive attacks by introducing new theorems to ensure resilience on DES

