

Valerio La Gatta

Knowledge-informed Disinformation Mining: From Fact-Checking to Content Moderation

Tutor: prof. Vincenzo Moscato

Cycle: XXXVI Year: 2023

My background

- MSc degree in Computer Engineering from University of Naples Federico II
- Group: Pattern Analysis and Intelligence
 Computation for mUltimedia System (PICUSLab)
- PhD date: 01/11/2020 31/10/2023
- Scholarship type: Unina
- Period abroad: University of Sourthern
 California, Los Angeles, June December 2022

Summary of study activities

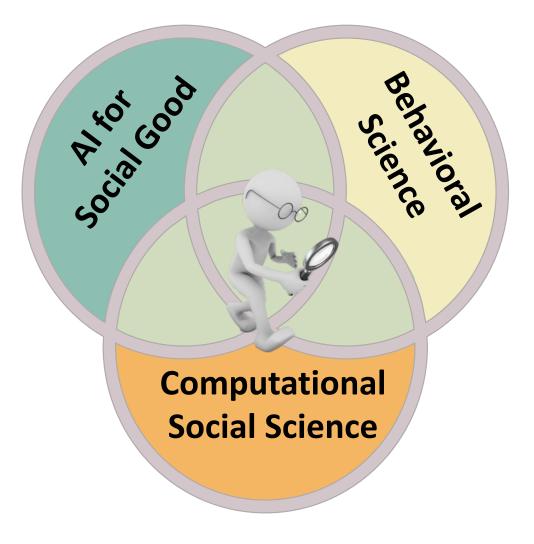
- Ad hoc PhD courses / schools
 - Scientific Programming and Visualization with Python
 - Statistical data analysis for science and engineering research
 - Data science for patient records analysis
 - Strategic Orientation for STEM research & writing
 - Big Data Architecture and Analytics
 - AIRO PhD School 2021 and 5th AIRO-Young Workshop
- Courses attended from MSc curricula
 - Natural Language Processing
 - Web and Real Time Communication Systems
- Attended Conferences
 - 34th ACM International Conference on Hypertext and Social Media (HT'2023)
 - The 2nd Italian Conference on Big Data and Data Science (ITADATA'2023).

Research area(s)

- Disinformation and Online Harms in Socio-Technical Systems
 - Fact-Checking, Disinformation Detection and Early Prevention
 - Malicious Behaviors on Social Media
 - Content Moderation across Social Media Platforms



Research Approach



	V. La Gatta, V. Moscato, M. Postiglione, G. Sperlì,
[14]	Covid-19 sentiment analysis based on Tweets,
[J1]	IEEE Intelligent Systems,
	vol. 38 (3), pp. 51-55, 2023, DOI: 10.1109/MIS.2023.3239180
	T. Chakraborty, V. La Gatta, V. Moscato, G. Sperlì,
	Information retrieval algorithms and neural ranking models to detect previously fact-
[J2]	checked information,
	Neurocomputing,
	vol. 557, 2023, DOI: 10.1016/j.neucom.2023.126680
	A. Ferraro, A. Galli, V. La Gatta, M. Postiglione,
	Benchmarking Open Source and Paid Services for Speech to Text: An Analysis of Quality
[J3]	and Input Variety,
	Frontiers in Big Data,
	vol. 6, 2023, DOI: 10.3389/fdata.2023.1210559
	V. La Gatta, V. Moscato, M. Pennone, M. Postiglione, G. Sperlì,
[[]	Music Recommendation via Hypergraph Embedding,
[J4]	IEEE Transactions on Neural Networks and Learning Systems,
	vol. 34 (10), pp. 7887-7899, 2022, DOI: 10.1109/TNNLS.2022.3146968

(ie)	A. Barducci, S. Iannaccone, V. La Gatta, V. Moscato, M. Postiglione, G. Sperlì, S. Zavota, An end-to-end framework for information extraction from Italian resumes,
[J5]	Expert Systems with Applications,
	vol. 210, 2022, DOI: 10.1016/j.eswa.2022.118487
	V. La Gatta, V. Moscato, M. Postiglione, G. Sperlì,
[IC]	CASTLE: Cluster-aided space transformation for local explanations,
[J6]	Expert Systems with Applications,
	vol. 179, 2021, DOI: 10.1016/j.eswa.2021.115045
	V. La Gatta, V. Moscato, M. Postiglione, G. Sperlì,
[17]	PASTLE: Pivot-aided space transformation for local explanations,
[J7]	Pattern Recognition Letters,
	vol. 149, pp. 67-74, 2021, DOI: 10.1016/j.patrec.2021.05.018
	V. La Gatta, V. Moscato, M. Postiglione, G. Sperlì,
[10]	An Epidemiological Neural Network Exploiting Dynamic Graph Structured Data Applied
[38]	to the COVID-19 Outbreak,
	IEEE Transactions on Big Data,
	vol. 7 (1), pp. 45-55, 2020, DOI: 10.1109/TBDATA.2020.3032755

	V. La Gatta, L. Luceri, F. Fabbri, E. Ferrara
	The Interconnected Nature of Online Harm and Moderation: Investigating the Cross-
[64]	Platform Spread of Harmful Content between YouTube and Twitter,
[C1]	34th ACM International Conference on Hypertext and Social Media (HT2023),
	Rome, Italy, Sept. 2023, ACM, DOI: 10.1145/3603163.3609058
	Nomination for the ACM Hypertext Ted Nelson Award
	M. Postiglione, G. Esposito, R. Izzo, V. La Gatta, V. Moscato, R. Piccolo
	Harnessing multi-modality and expert knowledge for adverse events prediction in
[C2]	clinical notes,
	International Conference on Image Analysis and Processing (ICIAP2023)
	Udine, Italy, Sept. 2023
	V. La Gatta, C. Wei, L. Luceri, F. Pierri, E. Ferrara
[62]	Retrieving false claims on Twitter during the Russia-Ukraine conflict,
[C3]	Companion Proceedings of the ACM The Web Conference 2023 (WWW2023),
	Austin, TX, USA, Apr. 2023, ACM, DOI: 10.1145/3543873.3587571

	G. Riccio, A. Romano, A. Korsun, M. Cirillo, M. Postiglione, V. La Gatta, A. Ferraro, A. Galli, V. Moscato
[C4]	Healthcare Data Summarization via Medical Entity Recognition and Generative AI,
	The 2 nd Italian Conference on Big Data and Data Science (ITADATA2023),
	Naples, Italy, Sept. 2023, CEUR Workshop Proceedings
	A. Ferraro, A. Galli, V. La Gatta, V. Moscato, M. Postiglione, G. Sperlì, F. Amato
[CE]	HEMR: Hypergraph Embeddings for Music Recommendation,
[C5]	Symposium on Advanced Database System (SEBD2023),
	Galzignano Terme, Italy, July 2023, CEUR Workshop Proceedings
	A. Ferraro, A. Galli, V. La Gatta, V. Moscato, M. Postiglione, G. Sperlì, F. Moscato
[66]	Unsupervised Anomaly Detection in Predictive Maintenance using Sound Data,
[C6]	Symposium on Advanced Database System (SEBD2023),
	Galzignano Terme, Italy, July 2023, CEUR Workshop Proceedings
	A. Ferraro, A. Galli, V. La Gatta, M. Postiglione
	A Deep Learning pipeline for Network Anomaly Detection based on Autoencoders,
[C7]	IEEE International Conference on Metrology for Extended Reality, Artificial
	Intelligence and Neural Engineering (MetroXRAINE2022),
	Rome, Italy, Oct. 2022, IEEE, DOI: 10.1109/MetroXRAINE54828.2022.9967598

	V. La Gatta, L. De Cegli, V. Moscato, G. Sperlì From Single-Task to Multi-Task: Unveiling the Dynamics of Knowledge Transfers in
[P1]	Disinformation Detection,
	Submitted to ACM The Web Conference 2024 (WWW2024)
	B. Grasso, V. La Gatta, V. Moscato, G. Sperlì
[P2]	KERMIT: Knowledge-EmpoweRed Model In harmful meme deTection,
	Submitted to Information Fusion
	A. Ferraro, A. Galli, M. Gallo, V. La Gatta, M. Postiglione, V. Moscato
[P3]	ExpLusion: Explanation-driven Late Fusion for enhanced production process monitoring
	Submitted to Journal of Intelligent Manufacturing
	R. Formisano, V. La Gatta, V. Moscato, G. Sperlì
[P4]	A Multimodal Retrieval System for Previously Fact-checked Information Detection,
	Submitted to Information Systems
	A. Galli, V. La Gatta, V. Moscato, M. Postiglione, G. Sperlì
[P5]	Interpretability in AI-based Behavioral Malware Detection Systems
	Submitted to Computers & Security

	V. La Gatta, M. Postiglione, V. Moscato, G. Sperlì
[P6]	An eXplainable Artificial Intelligence methodology on Big Data Architecture
	Submitted to Cognitive Computation
	V. La Gatta, M. Postiglione, G. Sperlì
[P7]	A novel augmentation strategy for credit scoring modeling
	Submitted to Engineering Applications of Artificial Intelligence

PhD thesis – Research Context

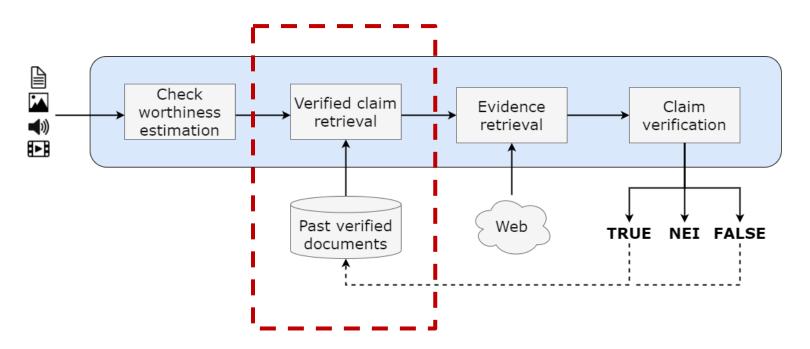
- Disinformation as false, misleading, and potentially hateful content across the digital information ecosystem
- Disinformation mining as a complex challenge intertwined with human cognition, social dynamics, and emotional responses
- Knowledge-informed strategies to contextualise and combat disinformation

PhD thesis – Research Thread(s)

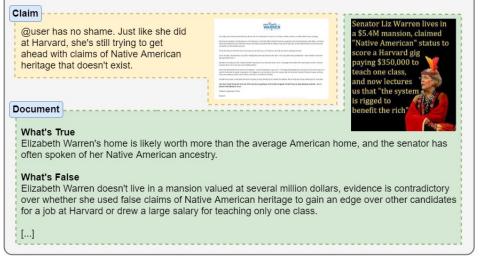
- Fact-checked Databases to improve the factchecking process
- Cultural and Common-sense Knowledge for disinformation detection
- Patterns from disinformation-related tasks to neutralize emotional appeal
- Platform Coordination and Collaborative Moderation

Fact-checked Databases Objective

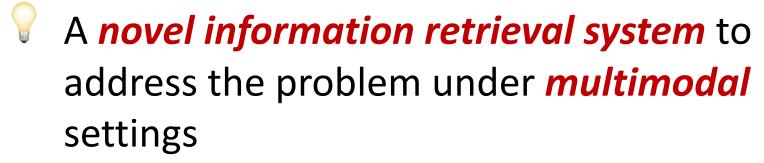
 Improving the fact-checking pipeline by detecting already-verified information



 Retrieve a list of verified documents according to the relevance with an input claim.

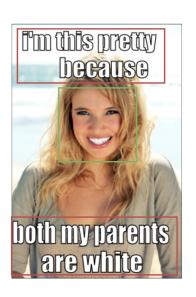


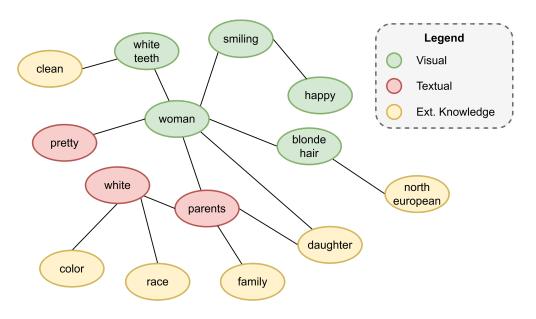
Fact-checked Databases Contributions



Common-sense Knowledge **Objective**

Incorporating *explicit content* and *implicit* background knowledge for the analysis of complex information





Common-sense Knowledge

22

Problem

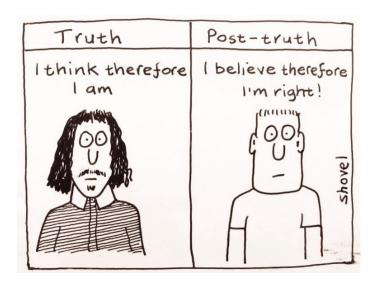
- Harmful Meme Detection
 - Text and image modalities within a meme are not always semantically consistent.
 - The understanding of a meme often relies on humans background knowledge.

Common-sense Knowledge

Contributions

- **KERMIT** A pioneering approach integrating meme content with external knowledge bases
- * Knowledge-enriched network integrating meme's internal entities with external knowledge from ConceptNet
- **Dynamic learning** via memory-augmented neural networks & attention mechanisms

 Neutralising emotional triggers and human vulnerabilities in disinformation

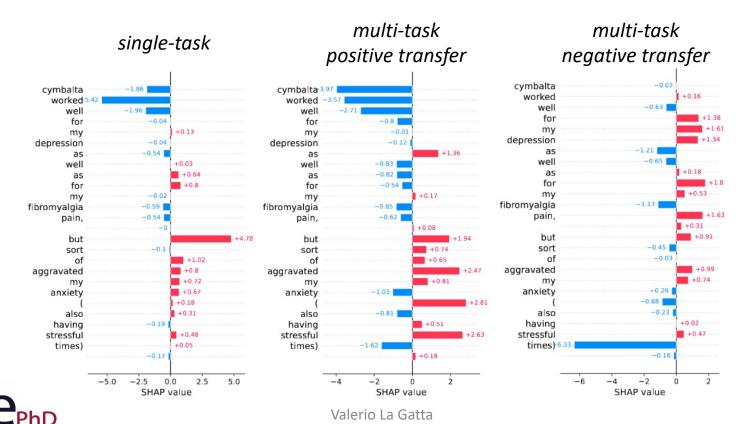


Disinformation-related Tasks

25

Problem

 Understand positive and negative transfers in multi-task learning for disinformation mining



Disinformation-related Tasks **Contributions**

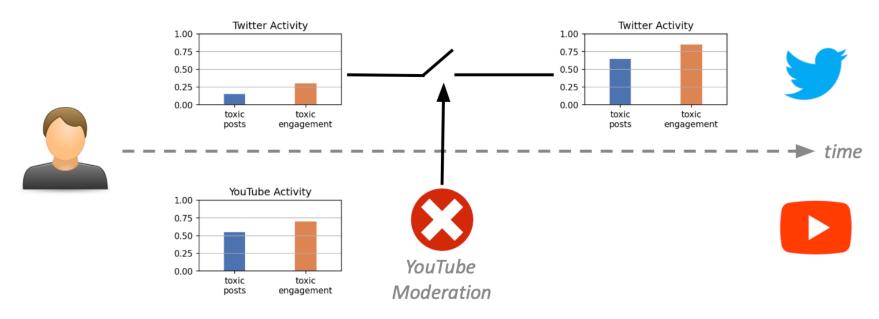
Interpretable Multi-task Framework to investigate positive and negative transfers among disinformation-related tasks

Model Explanations to compare single-task vs. multi-task models' knowledge

>> Dynamics of knowledge transfer between fake news detection, sentiment analysis, stance detection, topic detection

Collaborative Moderation Problem

 The moderation within a platform affects other platforms as well



Valerio La Gatta

27

Collaborative Moderation Objective

- Investigating whether content that has been deemed inappropriate on YouTube can *inform* moderation strategies on Twitter
 - **RQ1.** What is the prevalence, lifespan, and reach of moderated YouTube videos on Twitter?
 - RQ2. What are the characteristics of the mobilizers of moderated YouTube videos?
 - RQ3. Do the mobilizers of moderated YouTube videos receive significant engagement from the Twitter population?

Collaborative Moderation Contributions

- 25% YouTube videos shared on Twitter are eventually moderated on YouTube
- Twitter users sharing moderated YT videos endorse extreme and conspiratorial ideas
 - and are eventually suspended on Twitter!
- Sharing moderation interventions would benefit all entities within the information ecosystem.

Conclusions

What we saw today

- Knowledge-informed disinformation mining with fact-checked information, cultural knowledge, crosstask patterns and collaborative moderation
- Motivations and Contributions

What we didn't see today

- Methodological background and theory (e.g., memory-augmented neural network, attention mechanism, eXplainable AI)
- Technical results

Thank you for the attention!

Backup #1: Fact-checked Databases

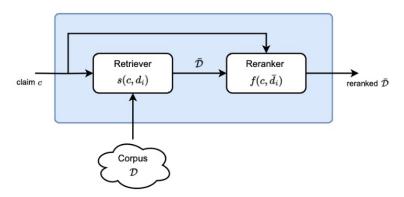
Benchmark semantic models and statistical approaches from related literature

Table 2: Performance of Neural Ranking Models (NRMs) (bold indicates the best results, underline the first runner up, * statistical significance at p=0.001 w.r.t. the second best)

Category	Model	MRR	$\mathrm{MAP}@k$						
		all	k = 1	k = 3	k = 5	k = 10	k = 20		
	BERT [<u>52</u>]	0.968*	0.942*	0.968*	0.968*	0.968*	0.968*		
	ColBERT [24]	0.903	0.847	0.893	0.901	0.902	0.903		
Interaction -based	MAN [45]	0.509	0.386	0.470	0.484	0.501	0.509		
-based	MatchPyramid [33]	0.495	0.413	0.444	0.462	0.479	0.489		
	KNRM [48]	0.319	0.212	0.272	0.287	0.298	0.307		
	ConvKNRM [14]	0.744	0.677	0.721	0.729	0.738	0.742		
Representation	ESIM [9]	0.507	0.370	0.451	0.482	0.498	0.504		
-based	HAR [51]	0.602	0.331	0.508	0.557	0.557	0.560		
Hybrid-based	DUET [27]	0.392	0.233	0.302	0.313	0.323	0.330		

Table 1: Performance of retrievers (bold indicates the best results, underline the first runner up)

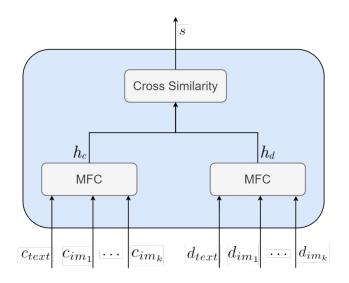
Category	Model	MRR	RR HasPositives@ k						
		all	k = 1	k = 3	k = 5	k = 10	k = 20	k = 50	k = 100
	TF-IDF	0.681	0.593	0.739	0.789	0.829	0.869	0.914	0.924
Classical	LM Dirichlet [50]	0.799	0.770	0.825	0.860	0.890	0.915	0.95	0.960
	BM25 [38]	0.817	0.785	0.865	0.880	0.895	0.915	0.950	0.960
Neural sparse	docT5query [32]	0.786	0.754	0.834	0.844	0.894	0.919	0.945	0.960
Term-based	ColBERT [24]	0.765	0.708	0.793	0.819	0.874	0.904	0.944	0.949
Document-level	SentenceBERT [37]	0.669	0.592	0.713	0.763	0.804	0.834	0.884	0.924
Document-level	DPR [23]	0.624	0.547	0.673	0.718	0.753	0.788	0.859	0.909



Retrieve and re-rank a corpus of documents according to the relevance with an input claim.

Backup #2: Fact-checked Databases

A *novel information retrieval system* to address the problem under *multimodal* settings



A powerful *vision-language model* followed by an efficient *vector similarity* module

Table 4: Re-ranking performance (bold indicates the best result, underline the first runner up)

		Politifact							
Method	MM	HIT@3	HIT@5	NDCG@1	NDCG@3	NDCG@5			
BM25		.379	.433	.182	.292	.313			
MatchPyramid		.455	.503	.294	.389	.408			
KNRM		.636	.722	.422	.549	.585			
BERT		.786	.856	.505	<u>.675</u>	.704			
MAN	✓	.732	.786	.551	.654	.676			
NSMN		.551	.679	.379	.477	.531			
sentence-BERT		.139	.176	.059	.098	.113			
Ours	✓	.918	.922	.701	.712	.721			

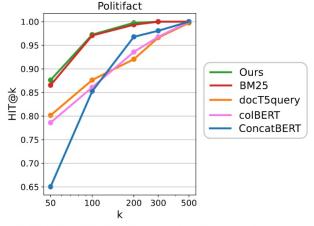


Figure 2: Retrieval hit ratios varying the number of retrieved documents from 50 to the full document corpus.

Backup #3: Fact-checked Databases

A case study on the *Ukraine-Russia* conflict to show case the utility of the task in operational settings

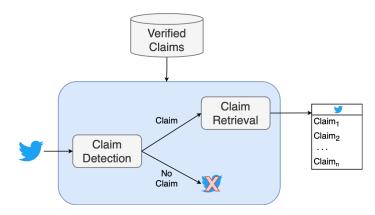
Table 1: Examples of some tweet-claim pairs annotated in the dataset

No.	Claim	Tweet
1	Russian President Vladimir Putin threatened India against getting involved in the Ukraine crisis.	Putin has warned India that don't try to interfere in their matter, otherwise be ready to face the consequences
2	The President Of Ukraine, Volodymyr Zelenskyy, Is On The Ground With His Fellow Troops	Volodymyr Zelenskyy the president of Ukraine has decided to stay behind and fight among his people against the Russian army send to kyiv []
3	The Russian armed forces are not striking at the cities of Ukraine; they are not threatening the civilian population.	It is clear that the Russian army does not want to harm civilians, its strikes were directed only at military targets, [] life seems almost normal in Kiev.
4	The Russian armed forces are not striking at the cities of Ukraine; they are not threatening the civilian population.	Russian forces continue strikes in multiple cities []. This is premeditated mass murder and must be responded to as such.

Annotation of 8300 claim-tweet pairs where the tweet either supports, refutes or generally discusses the claim.

Backup #4: Fact-checked Databases

A case study on the *Ukraine-Russia* conflict to show case the utility of the task in operational settings



The *claim detection* model detects whether a tweet reports a fact-checked claim. If a claim is detected, the *claim retrieval* model retrieves the most relevant claims related to the tweet.

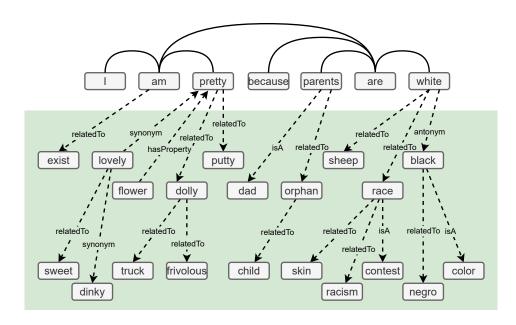
Table 5: Claim retrieval: performance comparison, and their 95% confidence interval, between the sentence-BERT baseline and our approach (bold indicates best on average, * indicates statistical significance (p < 0.01)

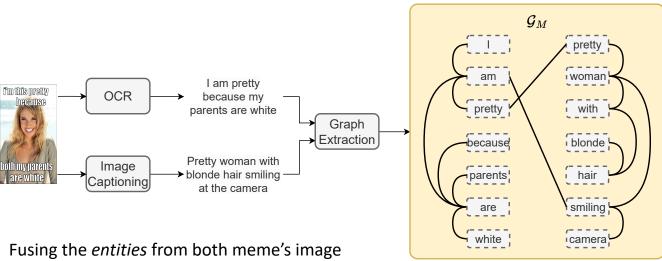
Setting	Model			HitRatio@k		
		k = 1	k = 3	k = 5	k = 10	k = 20
LTO	Sentence-BERT	$85.25\% \pm 2.07\%$	$94.87\% \pm 1.69\%$	$97.24\% \pm 0.96\%$	$98.77\% \pm 0.43\%1$	$99.27\% \pm 0.39\%$
	Ours	$86.05\% \pm 0.95\%$	$96.35\% \pm 0.71\%^*$	$98.04\% \pm 0.57\%^*$	$99.27\% \pm 0.36\%$	$99.78\% \pm 0.11\%^*$
LCO	Sentence-BERT	$77.60\% \pm 0.1196$	$95.68\% \pm 6.74\%$	$98.01\% \pm 3.66\%$	$99.63\% \pm 0.66\%$	$99.78\% \pm 0.00\%$
	Ours	$82.25\% \pm 10.81\%^*$	$96.42\% \pm 2.59\%$	$98.26\% \pm 1.45\%$	$99.88\% \pm 0.02\%$	$99.96\% \pm 0.00\%$

Backup #5: Commonsense Knowledge

Knowledge-enriched network

integrating meme's internal entities with external knowledge from ConceptNet



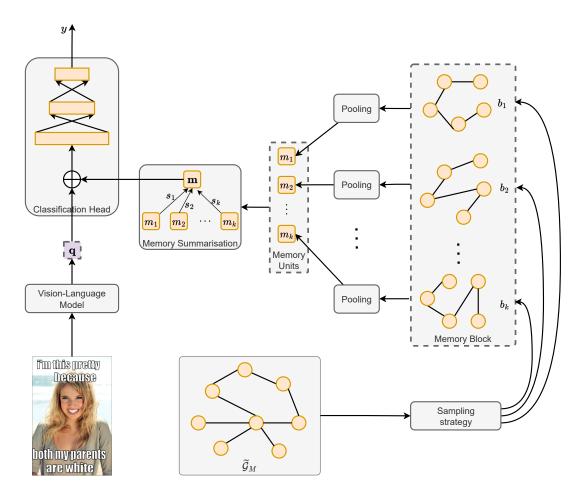


Recursively querying ConceptNet to obtain the knowledge-enriched information network

Fusing the *entities* from both meme's image and text modality to obtain the *meme graph*

Backup #6: Commonsense Knowledge

Dynamic learning via memoryaugmented neural networks & attention mechanisms



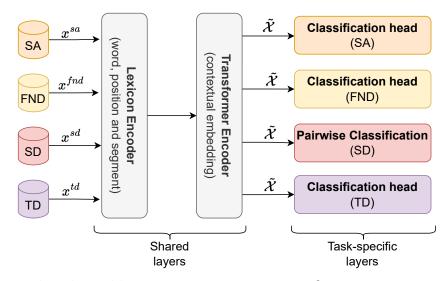
The framework automatically learns the most informative knowledge to perform the meme classification

Backup #7: Disinformation-related Tasks

Interpretable Multi-task Framework to investigate positive and negative transfers among disinformation-related tasks

Table 3: Comparison, in terms of F1-score, with baselines, under both single-task (ST) and multi-task (MT) settings. GPT3.5 is configured under 0-shot settings. (bold indicates the best result, underline the first runner up)

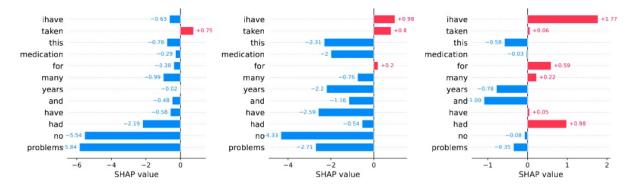
Method	Configuration	SA	FND	SD	TD
GPT3.5 0-shot		0.844	0.312	0.156	0.870
AdverMTL	ST	0.627	0.487	0.195	0.305
	MT	0.648	0.527	0.190	0.320
MaChAmp	ST	0.859	0.814	0.682	0.960
	MT	0.879	0.834	<u>0.729</u>	0.937
Ours	ST	0.861	0.768	0.728	0.971
	MT	0.890	0.822	0.751	0.977



The *shared layers* capture common information across tasks, while task-specific layers learns custom feature for each task.

Backup #8: Disinformation-related Tasks

Model Explanations to compare single-task vs. multi-task models' knowledge



Positive transfer has a regularization effect while negative transfer is equivalent to a random perturbation of feature importances.

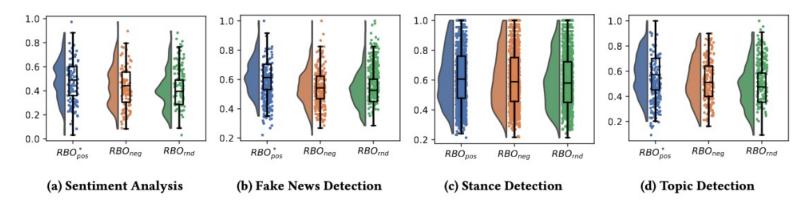
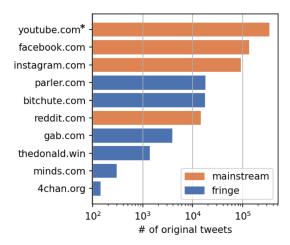


Figure 3: The distribution of RBO_{pos} , RBO_{neg} , and RBO_{rnd} for each task. (* indicates statistical difference, at p = .05, with respect to RBO_{neg})

Backup #9: Collaborative Moderation

- 24.7% (130k out of 527k) YT videos shared on Twitter were moderated on YouTube
- Moderated videos are engaged more than non-moderated ones in their (shorter) lifespan!



(a) Number of original tweets containing a link to each social media platform (Log-scale)

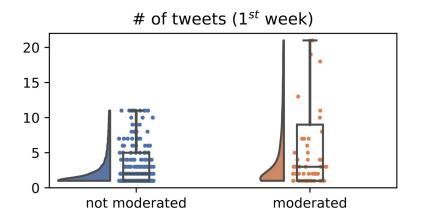


Figure 3: The distribution of the number of tweets sharing each video during the week after its first share

Backup #10: Collaborative Moderation

Twitter users sharing moderated YT videos endorse *extreme and conspiratorial ideas* and are eventually suspended on Twitter!

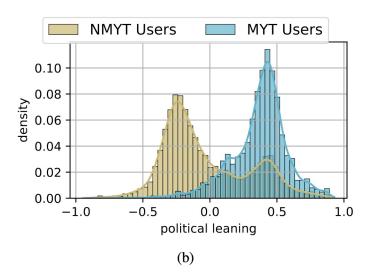


Figure 9: (a) The news outlet shared by each group of mobilizers; (b) the distribution of the political leaning within the two groups of mobilizers

	Total Accounts	Total Videos	Verified Accounts	Bot Accounts	Suspended Accounts	I InfoOps Accounts
NMYT Mobilizers	25396	88451	268	2234	7984	569
MYT Mobilizers	14481	61884	19	586	7793	30

