

Babar Ali Optical Fiber Sensors for Oncological Applications

Tutor: Prof. Cutolo Antonello Co-Tutor: Prof. Marco Pisco

Cycle: XXXVI

Year:20-2021

My background

- MSc. degree: Electronics and Communication Engineering
- Research laboratory: Information Photonics and Optical Communication
- PhD start date: November 2020
- Scholarship type: UNINA

Research field of interest

Optical Fiber Sensors for Oncological Applications

Fig.1. Lab on Fiber Schematic representation of the sensor

Vaiano, P. , et al. "Lab on Fiber Technology for biological sensing applications." Laser & Photonics Reviews 10.6(2016):922-961. Nabarun Polley. Et al " Fiber optic plasmonic sensors: Providing sensitive biosensor platforms with minimal lab equipment, 11 March 2019

Babar Ali

Research field of interest

Surface Enhanced Infrared Absorption Spectroscopy(SEIRAS) on Fiber-Tip for Oncological Applications

SEIRA on fiber technology will pave the way for this technology to be employed as **in-Vivo and real-time monitoring of biomolecular interactions for cancer biomarkers detection**.

Fig.2. (a) Characteristic infrared vibrations of selected molecular species. The fingerprint region containing skeletal vibrations is hatched. (b,c) Principle (SEIRA)

Neubrech et al, Chem. Rev. 2017, 117, 7, 5110–5145

Fig.3. Schematic representation of the electromagnetic mechanism of SEIRA on metal island film

- Vibrational Signal Enhancement
- Near field enhancement depends on:
 - Nanostractures shape and sizes
 - Spectral Tuning
 - ► FWHM

Chem. Sci., 2020,11, 4563-4577

Summary of study activities

• Briefly summarize the study activities of the academic year

- Attended (Courses, Seminars, PhD Schools)
- Research Tool Learning (MATLAB, COMSOL Multiphysics, and FTIR)
- Briefly Literature Study

Ad hoc PhD courses / schools

- Data Science for Patient Records Analysis
- Scientific Programming and Visualization with Python
- Matrix Analysis for Signal Processing with MATLAB Examples
- Advanced Topics in Radar Signal Processing
- AIRO PhD School 2021 and 5th AIRO-Young Workshop
- PhD School 5G Italy 2020

Courses borrowed from MSc curricula

- Optoelectronics

Conferences / events attended

- Seeing the Sound: Optical Neural Interfaces for In Vivo Neuromodulation
- Virtual Reality Optics: Present and Future
- Photonics Spectra Conference 2021

Summary of study activities

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	0	5.35	-	0	5.35
Bimonth 2	5	4.7	-	0	9.7
Bimonth 3	10.1	1.8	-	0	11.9
Bimonth 4	13	6.8	25	0	44.8
Bimonth 5	05	0	10	0	15
Bimonth 6	0	0	10	0	10
Total	33.1	18.65	45	0	96.75
Expected	30 - 70	10 - 30	80 - 140	0-4.8	

Research activity: Overview

- Problem
 - Precision medicine demands for advanced specific and sensitive biomedical tools for early cancer detection
- Objective
 - Development of optical fiber probe based on SEIRA spectroscopy for oncological application
- Methodology
 - Theoretical investigations of light interaction with plasmonic nanostructures (NA)
 - Design and numerical investigations of NA using MATLAB and COMSOL Multiphysics
 - NA fabrication by using available fabrication techniques (Lithography Method)
 - Comparison of numerical and experiment results
 - Transfer NA on fiber probe for SEIRA spectroscopy characterization
 - Collaborate with biologist for bioassay preparations
 - Characterization using portable Fourier-transform infrared (FT-IR)
 - After integration of all the components in a single system, the objectives are to determine the performance (sensitivity, selectivity, reproducibility) of our biosensor and to validate it for in vitro and in-vivo detection of biomolecules
 - Determine the enhancement factor and limit of detection of "SEIRA on Fiber"

Research activity: Overview

• Primarily Simulation Based Results

Fig5. Electric-field intensity distribution

Design Parameters

L=Rod Length, W=Width of Rod, T=Thickness of Rod r=Radius,

 $R{=}\ Centre\ Radius$, $d{=}\ Distance$, $P{=}\ Periodicity$ of Unit Structure,

Fig6. Simulated Reflection as a Function of Wavelength

Fig7. Simulated Electrical Field as a function of wavelength

