

Babar Ali Plasmonic ATR–SEIRA Substrates for Oncological Applications

Tutor: Prof. Cutolo Antonello

Co-Tutor: Prof. Marco Pisco

Cycle: XXXVI Year:21-2022

My background

- MSc. degree:Electronics and Communication Engineering
- Research group/laboratory: Information Photonics and Optical Communication
- PhD start date: November,2020
- Scholarship type: UNINA

Summary of study activities

	Courses	Seminars	Research	Tutorship	Total
Bimonth 1	3	1.6	10	0	14.6
Bimonth 2	3	0	8	0	11
Bimonth 3	5	0.7	6	0	11.7
Bimonth 4	4	1	5	0	10
Bimonth 5	0	0	5	0	5
Bimonth 6	0	0.8	10	0	10.8
Total	15	4.1	44	0	63.1
Expected	10 - 20	05-10	30- 45	0 - 4.8	

Briefly summarize the study activities of the academic year

- Attended (Courses, Seminars, PhD Schools)
- My research activities for the second year focuses on numerical simulations of suitable SEIRA substrates and the experimental (morphological characterization by AFM and spectral characterization by ATR-FTIR) SEIRA substrates.
- Ad hoc PhD courses / schools
- Software Defined Radio Applications for Radar and Localization
- Ultra High Field Magnetic Resonance Imaging
- Virtualization technologies and their applications
- Machine Learning for Science and Engineering Research

Conferences / events attended

Bio Photonics Conference

<u>Microscopy</u> and <u>Optical Coherence Tomography</u>, <u>Biomedical Imaging</u>, <u>Spectroscopy</u>

FTIR

Research activity: Overview

Problem

- To access the rich vibrational information of biomolecules and enables the investigation of unique structural chracteristic of biosamples
- Identify and develop novel and cost effective and highly efficient plasmonic nanostructures exhibiting good SEIRA properties (namely, the gain factor) in order to improve the detection characteristic of an ATR-FTIR instrument for cell analysis.

Research Objective

• To reach vibrational signal enhancement, I will exploit the optical properties of specially designed metallic nano particles, which should act as nanoantenna (NA) and the associated field enhancement to obtain a direct detection of bio molecules(Oncological Applications).

Neubrech et al, Chem. Rev. 2017, 117, 7, 5110-5145

Methodology

- My research activities for the second year focuses on numerical simulations of suitable SEIRA substrates and the experimental characterization SEIRA substrates received from our collaborator from CNR-Milan.
- The two research activities are ongoing concurrently.

Research activity: ATR-SEIRA Platform

- ➤ Identify suitable SEIRA substrate based
 - Nanostructures shape and sizes
 - > Spectral Tuning
 - > FWHM > SEIRA Gain Factor

Neubrech et al, Chem. Rev. 2017, 117, 7, 5110-5145

Research activity: Design and Simulation of the SEIRA substrates

Design Parameters

Fig. Design of ATR-SEIRA substrate in COMSOL Multiphysics)

Fig. Reflectance(a) and Absorptance(b)

Fig. Field Distribution at z-distance Noble-metal nanostructures allows a significant enhancement of the local scattered electromagnetic field at nanoscale "hot-spots".

Babar Ali

PBC (Periodic boundary conditions) PML (Perfectly matched layer)

Research activity: SEIRA Gain Factor Calculation

△R: Difference of Resonance peak with and without Molecule presence on NA

 ΔR_0 : Difference of Resonance peak with and without Molecule on presence Flat Gold

Name	Resonance Peak (um)	SEIRA Gain Factor
Peak0	3.6	1449
Peak1	5.2	748
Peak2	10.2	566

Fabrication Process and Experimental characterization

Fabrication Procedure

Deposit particle monolayer on surface Evaporate

Fig. Schematic Representing the Fabrication Procedure (Nanosphere lithography)

Nanostructured gold surface

Fabricated Sample from SCITEC-CNR in Milan

shaped

star)

Morphological characterization by AFM

Bruker The Nano Wizard® 4 XP Nanoscience atomic force microscope **Performance:**

- * Fast scanning with rates of up to 150 lines/sec, 100μm scan range
- * Nested Scanner Technology for high-speed imaging of surface structures up to 16.5µm
- ❖ V7 Software with revolutionary new workflow-based user interface
- ❖ Vortis™ 2 controller for high-speed signal processing and lowest noise levels

Single rectangular cell

Instrument settings:

- ❖ Tapping Mode™ with Phase Imaging™
- Laser align
- Detector align
- ❖ 510x510 pixels
- ❖ Scan size 2um
- Data processing in Gwyddion

Babar Ali

Nanostructure thickness=30nm

Research activity: Experimental characterization

Spectral characterization by ATR-FTIR

The PerkinElmer Spectrum[™] 3 FT-IR spectrometer

- ❖ Model: L1280127
- ❖ Wavelength range:8500 30 cm-1
- Exceptional signal-to-noise ratio and photometric performance
- High reproducibility of spectral data without spectral interferences
- Best-in-class sensitivity, even when using room temperature detectors
- Characterize fast reactions with scan speed up to 100 scans/sec
- Optimize sensitivity and spectral resolution performance

FTIR instrument

ATR Module

Scheme IR beam path

ATR-FTIR (at CeRICT SCRL-Benevento)

Instrument settings:

- ❖ Resolution=4cm⁻¹
- \bullet Measurement range = 2.5-16.67 micrometers
- Measured=Reflectance
- Accumulation: 16
- \bullet CO₂/H₂O settings
- \Leftrightarrow Scan speed (cm/s)=0.2
- Phase correction=magnitude
- **❖** Apodization=strong

Reflectance and Absorbance Spectra

Babar Ali