

Viviana Morlando

Control of legged robotic systems

Tutor: Fabio Ruggiero

Cycle: XXXV Year: First

My background

 M.Sc. in Automation Engineering Università degli Studi di Napoli Federico II

Group: PRISMA Lab

• PhD start date: 1/11/2019

Scholarship type: DIETI PRIN 2017 "PRINBOT"

Research field of interest

- Objective: development of autonomous systems in unstructured environments.
- Importance of legged systems: can adapt their foothold and overcome obstacles.
- Able to walk through challenging terrain inaccessible for wheeled robots.

- Number of legs: quadruped robots are the most used.
- Open challenges regarding the rejection of external disturbance and the balance.
- Quadruped with robotic arms can cooperate with humans in daily life tasks.

Summary of study activities

• **PhD school**: "EECI- International Graduate School on Control 2020- M10 Model Predictive Control", 8/06/2020-11/06/2020 **Lecturer**: Prof. Eduardo F. Camacho: Model Predictive Control is one of the most used control for legged robots, given the possibility to define a control strategy based on the prediction of the movements over a finite horizon.

• M.Sc. Courses:

- 1. "Field and Service Robotics", Lecturer: Dr. Fabio Ruggiero: The course provided an overview of the tools employed to model, plan, and control wheeled robots, unmanned aerial, underwater vehicles and legged robots
- 2. "Robotics lab", Lecturer: Dr. Vincenzo Lippiello: The course gave an overview of the fundamental tools and techniques used to program advanced robotics systems.

Conference attended :

- 1. "2020 IEEE International Conference on Robotics and Automation, ICRA 2020", Virtual Conference, May 31- August 31
- 2. "IEEE ICRA Workshop: Towards Real-World Deployment of Legged Robots, ICRA 2020", Virtual Workshop, June 22-July 3: The workshop focused on recent developments and future challenges regarding legged robots and control algorithms, with particular attention on the progress towards the goal of operating in human spaces

Research activity: Overview

Main problems about dynamic walking of a quadruped robot:

- Complexity given using a full dynamic of the robot.
- Disturbances applied on swing legs.
- Push recovery strategy
- Decouple the dynamic of a robotic arm from the dynamic of the quadruped.

Research activity during the First Year:

- Study of the state of art of the locomotion of quadruped robots.
- Development of a whole-body controller .
- Realization of a momentum-based observer as a solution of the problem regarding external disturbances, comparison with other observers.
- Simulations of the control framework using the Dynamic Simulator Gazebo.

Intended Contributions:

- Modify the Whole-Body Controller realized during this year in a Model Predictive Controller, improving the results thanks the prediction of the state.
- Working on a control framework for a quadruped endowed with a robotic arm using the observer realized this year or a Model Predictive Control
- Working on the push recovery of the quadruped:
 - 1. Recognize a sliding situation and recover the balance.
 - 2. Recognize an unavoidable fall and bring the robot in the position of minimum damage.

Products

[J1]

Viviana Morlando, Ainoor Teimoorzadeh, Fabio Ruggiero, "Whole-body Control with Disturbance Rejection through Momentum-based Observer for Quadruped Robots", submitted to: "Robotics and Automation Letters (IEEE RAL)", 2020

Thank you for the attention!

