Università degli Studi di Napoli Federico II # DOTTORATO DI RICERCA / PHD PROGRAM IN INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING # **Activities and Publications Report** # PhD Student: Michele Delli Veneri Student ID: DR993895 **PhD Cycle: XXXV** PhD Cycle Chairman: Prof. Stefano Russo PhD program student's start date: 01/11/2019 PhD program student's end date: 30/11/2022 **Supervisor: Prof. Vincenzo Moscato** e-mail: vmoscato@unina.it Co-supervisor: Prof. Giuseppe Longo e-mail: giuseppe.longo@unina.it PhD scholarship funding entity: EUSTEMA S.p.A UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle PhD candidate: Michele Delli Veneri #### **General information** Michele Delli Veneri received in year 2018 the Master Science degree in Physics from the University of Napoli Federico II. He attended a curriculum in Computer Science within the PhD program in Information Technology and Electrical Engineering. He received a grant from Eustema S.p.A. #### **Study activities** #### **Attended Courses** | Year | Course Title | Туре | Credits | Lecturer | Organization | |-----------------|--|------------------|---------|--|--------------------------------------| | 1 st | Hardware and Software Infrastructures for Big Data | MSc
course | 12 | Prof. Antonio
Picariello | University of Naples
Federico II | | 1 st | Data Management and
Computer Networks | MSc
course | 12 | Prof Flora Amato | University of Naples
Federico II | | 1 st | Start Cup Campania 2020 -
Innovation management,
entrepreneurship and
intellectual property | Ad hoc
course | 5 | Prof. Pierluigi Rippa | University of Naples
Federico II | | 1 st | Design and Implementation of Augmented Reality Software Systems | | 4 | Prof. Fasolino, Prof.
Amalfitano | University of Naples
Federico II | | 1 st | Machine Learning | MSc
course | 4 | Prof. Aiello, Prof.
Corazza, Prof.
Sansone | University of Naples
Federico II | | 1 st | Strategic Orientation for STEM Research & Writing | Ad hoc course | 3.6 | Prof. Fraser | University of Naples
Federico II | | 2 nd | Information Theory | MSc
course | 6 | Prof. Tulino | University of Naples
Federico II | | 2 nd | Elaborazione dei Segnali
Digitali | MSc
course | 6 | Prof. Tulino | Universtity of Naples
Federico II | | 2 nd | ALMA I-TRAIN with the
European ARC Network | External course | 0.4 | European ARC
Network | European ARC Network | UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle PhD candidate: Michele Delli Veneri #### **Attended PhD Schools** | Year | School title | Location | Credits | Dates | Organization | |-----------------|---------------------|----------|---------|------------------------|----------------------------------| | 2 nd | Matlab fundamentals | Online | 2 | 20/02/20 -
27/03/20 | University of Naples Federico II | #### **Attended Seminars** UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle | Year | Seminar Title | Credits | Lecturer | Lecturer affiliation | Organization | |-----------------|---|---------|------------------------------------|---|--| | 1 st | Intelligenza Artificiale ed
Etica: La ricerca IA alla
prova delle sfide etiche | 1.4 | Prof.
Roberto
Prevete | University of Naples
Federico II | ITEE | | 1 st | Computational Biology: large scale data analysis to understand the molecular basis of human diseases | 0.2 | Prof.
Michele
Ceccarel
li | University of Naples
Federico II | ITEE | | 1st | How to get published with IEEE | 0.4 | Dr.
Eszter
Lukacs | IEEE Client Services
Manager | ITEE | | 1st | Large scale training of Deep
Neural Networks | 0.4 | Dr.
Giusepp
e
Fiameni | | Italian Association for
Computer Vision, Pattern
Recognition
and Machine Learning
(CVPL) | | 1st | Bias from the Wild | 0.4 | Prof.
Nello
Crisianin
i | University of Bristol | CVPL | | 1 st | Space Signal Processing and Cumputational image formation | 0.4 | Saiprasa
d
Ravisha
nkar | Michigan State
University | CVPL | | 1 st | Linear regression in PyTorch
and Convolutional Neural
Netoworks | 0.4 | Dr.
Giusepp
e
Fiameni | NVIDIA AI
Technology Center
Italy | CVPL | | 1st | Efficient Data Loading using DALI and Mixed Precision Training in Apex | 0.3 | Dr.
Giusepp
e
Fiameni | NVIDIA AI
Technology Center
Italy | CVPL | | 1st | Multi-GPU Training using
Horovod, Deploying Models
with TensorRT and Profiling
with NVTX | 0.4 | Dr.
Giusepp
e
Fiameni | N V I D I A A I
Technology Center
Italy | CVPL | | 1st | Wearable Brain-Computer
Interface for Augmented
Reality-based Robotic
Applications in Industry 4.0 | 0.2 | Prof.
Pasqual
e Arpaia | University of Naples
Federico II | ITEE | | 1 st | Algorithmic accountability.
Affidabilità e responsabilità
negli algoritmi. | 0.4 | Antonio
Sassano | Fondazione Bordoni | ITEE | UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle | 1st | IBM Quantum: I primi | 0.3 | Prof. | University of Parma | ITEE | |-----------------|--|-----|---|---|-------------------------------------| | 130 | computer quantistici per la
ricerca e la didattica | 0.5 | Federico
Mattei | Offiversity of Parma | HEE | | 2 nd | Picariello Lectures on Data
Science, Performing an
Iso27001 Assessment | 0.2 | Ing
Enrico
Micillo | Cybersecurity & Digital Protection Practice | University of Naples
Federico II | | 2 nd | Picariello Lectures on Data
Science, Connecting the
dots: investigating an APT
campaign using Splunk | 0.2 | Ing.
Antonio
Forzieri | EMEA | University of Naples
Federico II | | 2 nd | Picariello Lectures on Data
Science, Digital Project
Management: practices,
processes, techniques,
tools and scientific
approach | 0.2 | Prof.
Dario
Caroten
uto | University of Naples
Federico II | University of Naples
Federico II | | 2 nd | Picariello Lectures on Data
Science, #andratuttobene:
images, texts, emojis &
geodata in a Sentiment
Analysis pipeline | 0.3 | Prof.
Serena
Pelosi | University of
Salerno | University of Naples
Federico II | | 2 nd | Picariello Lectures on Data
Science, At the Nexus of Big
Data, Machine Intelligence
and Human Cognition | 0.2 | Prof.
George
S.
Djorgov
ski | CALTECH | University of Naples
Federico II | | 2 nd | Picariello Lectures on Data
Science, Exploiting Deep
Learning and Probabilistic
Modelling for Behaviour
Analytics | 0.2 | Prof.
Giusepp
e Manco | ICAR-CNR | University of Naples
Federico II | | 2 nd | Picariello Lectures on Data
Science, Data Driven
Transformation in WINDTRE
through Managers voice | 0.4 | Marcell
o
Savares
e | WINDTRE | University of Naples
Federico II | | 2nd | Picariello Lectures on Data
Science, From Photometric
Redshifts to improved
weather forecasting an
interdisciplinary view on
machine learning | 0.2 | Prof. Kai
Polstere
r | University of
Haideberg | University of Naples
Federico II | UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle | 2 nd | Picariello Lectures on Data
Science, Cybercrime and
electronic evidence, the
international legal
framework for an effective
criminal justice response | 0.2 | Matteo
Lucche
tti | C-PROC | University
Federico II | of | Naples | |-----------------|--|-----|-----------------------------------|-------------------------------------|---------------------------|----|--------| | 2 nd | Picariello Lectures on Data
Science, Al LEGAL: artificial
intelligence fro notary's
sector - a case study | 0.2 | Salvator
e
Palange | Fuel Innovation for
Business | University
Federico II | of | Naples | | 2 nd | Picariello Lectures on Data
Science, The era of industry
4.0: new frontiers in
business model innovation | 0.2 | Marco
Bolzano | University of Naples
Federico II | University
Federico II | of | Naples | | 2 nd | Picariello Lectures on Data
Science, Machine Learning:
causality lost in translation | 0.3 | Prof.
Edwin E
Valentji
n | University of
Groningen | University
Federico II | of | Naples | | 2 nd | Picariello Lectures on Data
Science, Approaches to
graph machine learning | 0.2 | Miroslav
Cepek | Oracle Labs | University
Federico II | of | Naples | | 2 nd | Picariello Lectures on Data
Science, Visual interaction
and communication in data
science | 0.4 | Marco
Quartull
i | Vicomtech | University
Federico II | of | Naples | | 2 nd | Picariello Lectures on Data
Science, Big Data and
computational linguistics | 0.4 | Francesc
o
Cotugno | University of Naples
Federico II | University
Federico II | of | Naples | | 2 nd | Picariello Lectures on Data
Science, Sensoria Health | 0.2 | Stefano
Rossetti | University of Naples
Federico II | University
Federico II | of | Naples | | 2 nd | Picariello Lectures on Data
Science, the coming
revolution of data driven
discovery | 0.3 | Prof.
Giusepp
e Longo | University of Naples
Federico II | University
Federico II | of | Naples | | 2 nd | Picariello Lectures on Data
Science, Distributional
Semantics Methods: How
Linguistic features can
improve the semantic
representation | 0.4 | Alessan
dro
Mais | University of
Salerno | University
Federico II | of | Naples | | 2 nd | DoveAndiamoDomani - | 0.3 | Francesc
o
Matteuc
ci | Deep Tech | University
Federico II | of | Naples | UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle | 2 nd | Artificial Intelligence and 5 G combined with holographic technology: a new perspective for remote health monitoring | 0.4 | Dr. Pietro Ferraro, Dr. Pasqual e Mammo lo | Telco | University of Naples
Federico II | |-----------------|---|-----|---|------------------------------------|---| | 2 nd | From Cells to Galaxies,
Introductory remarks: from
cells to galaxies imaging
challenges in Astronomy
and Medicine | 0.4 | Neb
Duric | • | The National Radio
Astronomy Observatory | | 2 nd | SAE 2021 - Big4small | 0.4 | Edwin
Valentji
n, Kai
Posterer | University of
Groningen | University of Rome La
Sapienza | | 2 nd | Thriving as a doctoral student in informatics | 0.4 | Prof.
Geraldin
e
Fitzpatri
ck | TU Wien | Informatics Europe | | 2 nd | Adventures in Astronomical
Time Series Analysis | 0.4 | Jeffrey
D.
Scargle | N A S A A m e n
Research Center | IAA-IAU | | 2nd | From Cells to Galaxies, Introduction to Radio Astronomy for Medical Imaging Professionals" and "Introduction to Medical Imaging for Radio Astronomers | 0.4 | Urvashi
Rău,
Daniel
Sodickso
n | NRAO | The National Radio
Astronomy Observatory | | 3rd | Single Cell omits leverage Machine Learning to dissect tutor microenvironment and cancer immuno editing | 0.4 | Dr.
Raoul J.
P.
Bonnie | Worcester
University | DIETI | | 3rd | From Cells to Galaxies, Inverse Imaging Techniques from Radio Imaging Side, Machine Learning For Medical Image Reconstruction | 0.6 | Dr.
Voronko
v, Dr.
Ravisha
nkar | NRAO | The National Radio
Astronomy Observatory | UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle | 3rd | Information field theory, from astronomical imaging to artificial intelligence | 0.4 | Torsten
Enßlin | Max Plank Institute
for Astrophysics | IAU-IAA | |-----|--|-----|--|--|---| | 3rd | From Cells to Galaxies,
Challenges and Innovations
in Visualisation of Radio
Astronomy Data,
Visualisation from the
Medical Imaging Side | 0.3 | Dr.
Taylor,
Mr.
Mather | NRAO | IAU-IAA | | 3rd | The learning landscape in deep neural networks and its exploitation by learning algorithms | 0.2 | Riccardo
Zecchin
a | Bocconi University | ITEE | | 3rd | Methods for scalable probabilistic inference | 0.2 | Dan
Forema
n-
Mackey | Flatiron Institute's
Center for
Computational
Astrophysics | IAU-IAA | | 3rd | From Cells to Galaxies,
Software Systems used in
Radio Astronomy, Enabling
Mathematical Insights in
Large-scale, N-Dimensional
images using open-source
toolkits | 0.3 | Kumar
Golan,
Beatriz
Paniagu
a | NRAO | The National Radio
Astronomy Observatory | | 3rd | Picariello Lectures on Data
Science II, Can a Text-To-
Speach Engine generate
human sentiments? | 0.2 | Prof.
Vijay K.
Gurbani | Computer Science
Department, Illinois
Institute of
Technology | University of Naples
Federico II | | 3rd | From Cells to Galaxies, Identifying Areas of Collaboration; Next steeps for a face to face meeting | 0.2 | Karen
Praire | | The National Radio
Astronomy Observatory | | 3rd | Picariello Lectures on Data
Science II, Towards a
Political Philosophy of Al | 0.4 | Prof.
Mark
Coekelb
ergh | University of Wien | University of Naples
Federico II | | 3rd | An Introduction to Deep
Learning for Natural
Language Processing | 0.2 | Dr.
Marco
Valentin
o | University of
Manchester | ITEE | | 3rd | Explainable Natural
Language Inference | 0.3 | Dr.
Marco
Valentin
o | University of
Manchester | ITEE | UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle PhD candidate: Michele Delli Veneri | 3rd | Deep Learning based imaging in radio interferometry | 0.2 | Kevin
Schimidt | TU Dortmund | IAU-IAA | |-----|---|-----|---------------------------------|-------------------------------------|-------------------------------------| | 3rd | The Anomaly Detection
Classifier for AleRCE broker | 0.2 | Manuel
Perez
Carrash
o | UDEC/MAS | IAU-IAA | | 3rd | A general purpose statistical method for improved learning under covariate shift | 0.2 | Roberto
Trotta | University of Naples
Federico II | University of Naples
Federico II | | 3rd | Conditional Invertible
Neural Network (cINN) as
an emission-line diagnostic
tool for HII regions | 0.2 | Dr. Eun
Kang | Heidelberg
University | IAU-IAA | #### **Research activities** Michele Delli Veneri participated in the following research activities: - In collaboration with Eustema S.p.A., I have studied and investigated the main approaches in literature for hybrid classification. State of the art methods in literature share common shortcomings: I) they are based on clustering algorithms which make assumption about the underling data distribution; ii) they separate clustering and classification in two separate phases; iii) they do not consider the effect of noise. To solve all three main shortcomings, I have developed HyCASTLE (a Hybrid ClAssification System based on Typicality, Labels and Entropy), a hybrid model based on the Typicality, with uses cluster aggregation/ separation strategy based on both data topology and known labels. The work resulted in a publication on Knowledge Based Systems; - In collaboration with the department of Geology, I have worked on the application of Deep Learning for the classification of earth drainage systems from satellite images. The work resulted in a publication on Nature Scientific Reports; - In collaboration with the department of Dermatology, I have worked on the prediction of the outcomes of the Dupilumab treatments in elderly patients. The work resulted in a publication on the American Journal of Clinical Dermatology; - In collaboration with INAF astronomers, I have worked on a method for defining rejection criteria for Euclid Probability Density Functions. The work resulted in a publication on MNRAS. #### **Tutoring and supplementary teaching activities** Data Mining MOD .B (U2642) for the Data Science Master Degree, Prof. G. Longo. Between May and July 2021 I helped Prof. Longo with 16 hours of frontal lesson and student tutoring, and for another 24 hours between July and November._ UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle PhD candidate: Michele Delli Veneri #### **Credits summary** | PhD Year | Courses | Seminars | Research | Tutoring /
Supplementary
Teaching | |-----------------|---------|----------|----------|---| | 1 st | 42.6 | 5.2 | 35 | | | 2 nd | 12.4 | 7.4 | 45 | 1.6 | | 3rd | 0 | 4.5 | 60 | | #### Research periods in institutions abroad and/or in companies | PhD
Year | Institution /
Company | Hosting tutor | Period | Activities | |-------------|--|--------------------------|------------------------------------|--| | 2st | University of Groningen, Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence | Michael Biehl | 13/09/
2021 -
01/04/
2022 | Research on the SKA Source Detection and Characterisation Problem | | 3st | ESO, Garching,
Germany | Fabrizia
Guglielmetti | 15/05/
2022 -
11/06/
2022 | Research on the the ALMA Source Detection and Characterisation Problem | #### PhD Thesis Current and forthcoming Astronomical observatories are rapidly increasing the quantity, velocity and complexity of their data products pushing Astronomy in the Big Data regime. Extracting scientifically usable data from such instruments involves the resolution of ill-posed inverse problems traditionally solved with algorithms which cannot cope anymore with the rising complexity. In the last decade, Machine Learning has seen a deep rise in its use both within and outside Astronomy. In this Thesis, I have developed a set of Deep Learning (DL) based pipelines aimed at the resolution of two such problems: the Radio Interferometric Deconvolution, Source Detection and Characterisation problem for two different radio interferometers, the Atacama Large Millimeter/submillimeter Array (ALMA) and the Square Kilometer Array (SKA), and the TOLIMAN space telescope Astrometric Signal Detection problem. Given the novelty of the instruments and the need for controlled experiments for the development and comparison of solutions, all studies carried out in this Thesis use simulated data. SKA and TOLIMAN data were acquired through my participation in the SKA Data Challenge 2 and COIN TOLIMAN Focus, while I developed a simulation UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle PhD candidate: Michele Delli Veneri framework able to generate the needed ALMA observations by levering parallel computing. The ALMA pipeline is composed of six DL models: a Convolutional Autoencoder (CAE) for source detection within the spatial domain of the integrated data cubes, a Recurrent Neural Network (RNN) for denoising and peak detection within the frequency domain, and four Residual Neural Networks (ResNets) for source characterisation. The detection performances of the pipeline were compared to those of other state-of-the-art methods within the field and significant improvements in performances and computational times are achieved. Source morphologies are detected with subpixel accuracies obtaining mean residual errors of 10-3 pixel (0.1 mas) and 10-1 mJy/beam on positions and flux estimations, respectively. A direct comparison with tCLEAN, the current image deconvolution method employed by CASA, the ALMA data reduction pipeline, is made on the simplified mock data achieving a substantial improvement in reconstruction quality and speed. The SKA pipeline, which I developed to address the shortcomings of the baseline pipeline developed during the Challenge in collaboration with COIN, is based on a combination of a classical Compressed Sensing algorithm, my 3D implementation of the Multi Vision Model, with six DL models: A 3D CAE for source detection, a 3D ResNet classifier to detect and remove false detections, and four 3D ResNet regressors to predict sources morphological parameters. The performances of the debugged, re-trained and optimised baseline pipeline and the revised pipeline are compared with those of the other solutions to the challenge. The revised pipeline reaches the highest score with slight improvements over the challenge winners. The TOLIMAN pipeline is the only unsupervised pipeline developed in this Thesis and it is based on a CAE tasked with compressing the TOLIMAN image time series into a monodimensional latent space which is then analysed through a Lomb-Scargle periodogram in search of periodic components. The pipeline performances in detecting increasingly small and realistic Astrometric signals embedded within a series of simulated TOLIMAN observations of Alpha Cen star system are compared to those other sparsity-based state-of-the-art solutions within the field. The signals are simulated as time-dependent shifts in the positions of two overlapping point spread functions in the TOLIMAN images. Our pipeline is the only one which can reliably detect the signal with an amplitude of 10-6 times the pixel size. The simulations contained only Poisson noise, in future works, all the more realistic sources of noise and systematic effects present in the real-world satellites will be injected into the simulations. Our pipeline is the only one which can reliably detect the signal with an amplitude of 10-6 times the pixel size. The simulations contained only Poisson noise, in future works, all the more realistic sources of noise and systematic effects present in the real-world satellites will be injected into the simulations. #### **Publications** Research results appear in 7 papers published in international journals, 0 papers published in national journals, 2 contributions to international conferences, 0 contributions to national conferences, 0 patents. UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle PhD candidate: Michele Delli Veneri #### List of scientific publications #### **International journal papers** M. Delli Veneri, L. Desdoigts, M. A. Schmitz, A. Krone-Martins, E. E. O. Ishida, P. Tuthill, R. S. De Souza, R. Scalzo, M. Brescia, G. Longo, A. Picariello, Periodic Astrometric Signal Recovery Through Convolutional Autoencoders, Intelligent Astrophysics, pp 167 - 195, part of the Emergence, Complexity and Computation book series, DOI: 10.1007/978-3-030-65867-0_8 M. Delli Veneri, S. Cavuoti, R. Abbruzzese, M. Brescia, G. Sperli', V. Moscato, G. Longo, HyCASTLE: A Hybrid ClAssification System based on Typicality, Labels and Entropy, Knowledge-Based Systems, Volume 244, May 2022, DOI: 10.1016/j.knosys.2022.108566 M. Delli Veneri, L. Tychoniec, F. Guglielmetti, G. Longo, E. Villard, 3D Detection and characterisation of ALMA sources through Deep Learning, Monthly Notices of the Royal Astronomical Society, Accepted on 12/11/2022, DOI: 10.1093/mnras/stac3314 M. Delli Veneri, R. S. De Souza, A. Krone-MArtins, E. E. O. Ishida, M. L. L. Dantas, N. Kennamer, COIN Collaboration, How have astronomers cited other fields in the last decade?, Research Notes of the American Astronomical Society, Volume 6, Number 6, DOI: 10.3847/2515-5172/ac74c7 V. Amaro, S. Cavuoti, M. Brescia, G. Riccio, C. Tortora, M. D'Addona, **M. Delli Veneri**, N. R. Napolitano, M. Radovich, G. Longo, Rejection criteria based on outliers in the KiDS photometric redshifts and PDF distributions derived by Machine Learning, Intelligent Astrophysics pp 245 - 265, part of the Emergence, Complexity and Computation book series, DOI: 10.1007/978-3-030-65867-0 11 C. Donaddio, M. Brescia, A. Riccardo, G. Angora, M. Delli Veneri, G. Riccio, A novel approach to the classification of terrestrial drainage networks based on deep learning and preliminary results on solar system bodies, Scientific Reports 11, Nature, a.n. 5875, 2021, DOI: 10.1038/s41598-021-85254-x UNINA PhD in Information Technology and Electrical Engineering – XXXV Cycle PhD candidate: Michele Delli Veneri C. Patruno, G. Fabbrocini, G. Longo, G. Argenziano, S. M. Ferrucci, L. Stringendi, K. Peris, M. Ortoncelli, A. Offidani, G. F. Amoruso, M. Talamonti, G. Girolomoni, T. Grieco, M. Iannone, E. Nettis, C. Foti, F. Rongieletti, M. Corazza, M. Delli Veneri, M. Napolitano, DADE Study Group, Effective and safety of long-term dupilumab treatment in elderly patients with atopic dermatitis: a multicenter real-life observational study, American Journal of Clinical Dermatology, 22, 481 - 586, 2021 DOI: 10.1007/s40257-021-00597-5 #### International conference papers F. Guglielmetti, P. Arras, **M. Delli Veneri**, T. Enßlin, G. Longo, L. Tychoniec, E. Villard, Bayesian and Machine Learning Methods in the Big Data era for astronomical imaging, International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, IHP, Paris, July 18-22, 2022, DOI: https://arxiv.org/abs/2210.01444v1 **M. Delli Veneri**, L. Tychoniec, F. Guglielmetti, E. Villard, G. Longo, 3D Detection of ALMA Sources through Deep Learning, New Frontiers in Mining Complex Patterns, 2022, ECML-PKDD Conference, Grenoble, France, 19 - 23-09-2022, DOI: http://www.di.uniba.it/~mignone/NFMCP/#Submit Date 19/11/2022 PhD student signature **Supervisor signature**